基于注意的神经网络混合对比学习在数字支付系统中的鲁棒欺诈检测

Md Shahin Alam Mozumder;Mohammad Balayet Hossain Sakil;Md Rokibul Hasan;Md Amit Hasan;K. M Nafiur Rahman Fuad;M. F. Mridha;Md Rashedul Islam;Yutaka Watanobe
{"title":"基于注意的神经网络混合对比学习在数字支付系统中的鲁棒欺诈检测","authors":"Md Shahin Alam Mozumder;Mohammad Balayet Hossain Sakil;Md Rokibul Hasan;Md Amit Hasan;K. M Nafiur Rahman Fuad;M. F. Mridha;Md Rashedul Islam;Yutaka Watanobe","doi":"10.1109/OJCS.2025.3581950","DOIUrl":null,"url":null,"abstract":"Fraud detection in digital payment systems is a critical challenge due to the growing complexity of transaction patterns and the inherent class imbalance in datasets. This article proposes a novel Hybrid Contrastive Learning framework integrating Siamese Networks with Attention-Based Neural Networks to effectively distinguish fraudulent from legitimate transactions. The proposed model achieves state-of-the-art results, surpassing 10 recent methods in key metrics, with a recall of 95.42%, precision of 97.35%, and ROC-AUC of 98.78% on the Credit Card Fraud Detection dataset. Cross-dataset evaluations using a simulated transaction dataset demonstrate consistent generalization, achieving a recall of 95.12% and ROC-AUC of 98.60%. An ablation study underscores the impact of attention mechanisms and contrastive learning, with the combined approach improving F1-score by up to 2.64%. Additionally, SHAP-based analysis reveals the importance of key features such as transaction amount and PCA-derived components in model decisions, enhancing explainability. The results establish the proposed framework as a robust, interpretable, and scalable solution for fraud prevention in digital payment systems.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"1053-1064"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11045880","citationCount":"0","resultStr":"{\"title\":\"Hybrid Contrastive Learning With Attention-Based Neural Networks for Robust Fraud Detection in Digital Payment Systems\",\"authors\":\"Md Shahin Alam Mozumder;Mohammad Balayet Hossain Sakil;Md Rokibul Hasan;Md Amit Hasan;K. M Nafiur Rahman Fuad;M. F. Mridha;Md Rashedul Islam;Yutaka Watanobe\",\"doi\":\"10.1109/OJCS.2025.3581950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fraud detection in digital payment systems is a critical challenge due to the growing complexity of transaction patterns and the inherent class imbalance in datasets. This article proposes a novel Hybrid Contrastive Learning framework integrating Siamese Networks with Attention-Based Neural Networks to effectively distinguish fraudulent from legitimate transactions. The proposed model achieves state-of-the-art results, surpassing 10 recent methods in key metrics, with a recall of 95.42%, precision of 97.35%, and ROC-AUC of 98.78% on the Credit Card Fraud Detection dataset. Cross-dataset evaluations using a simulated transaction dataset demonstrate consistent generalization, achieving a recall of 95.12% and ROC-AUC of 98.60%. An ablation study underscores the impact of attention mechanisms and contrastive learning, with the combined approach improving F1-score by up to 2.64%. Additionally, SHAP-based analysis reveals the importance of key features such as transaction amount and PCA-derived components in model decisions, enhancing explainability. The results establish the proposed framework as a robust, interpretable, and scalable solution for fraud prevention in digital payment systems.\",\"PeriodicalId\":13205,\"journal\":{\"name\":\"IEEE Open Journal of the Computer Society\",\"volume\":\"6 \",\"pages\":\"1053-1064\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11045880\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Computer Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11045880/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11045880/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于交易模式的日益复杂和数据集中固有的阶级不平衡,数字支付系统中的欺诈检测是一个关键的挑战。本文提出了一种新的混合对比学习框架,将暹罗网络与基于注意力的神经网络相结合,有效地区分欺诈交易和合法交易。所提出的模型达到了最先进的结果,在关键指标上超过了最近的10种方法,在信用卡欺诈检测数据集中,召回率为95.42%,精度为97.35%,ROC-AUC为98.78%。使用模拟交易数据集的跨数据集评估显示出一致的泛化,实现了95.12%的召回率和98.60%的ROC-AUC。一项消融研究强调了注意机制和对比学习的影响,联合方法可使f1得分提高2.64%。此外,基于shap的分析揭示了关键特征的重要性,例如交易金额和模型决策中的pca衍生组件,从而增强了可解释性。结果表明,所提出的框架是数字支付系统中防止欺诈的稳健、可解释和可扩展的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Contrastive Learning With Attention-Based Neural Networks for Robust Fraud Detection in Digital Payment Systems
Fraud detection in digital payment systems is a critical challenge due to the growing complexity of transaction patterns and the inherent class imbalance in datasets. This article proposes a novel Hybrid Contrastive Learning framework integrating Siamese Networks with Attention-Based Neural Networks to effectively distinguish fraudulent from legitimate transactions. The proposed model achieves state-of-the-art results, surpassing 10 recent methods in key metrics, with a recall of 95.42%, precision of 97.35%, and ROC-AUC of 98.78% on the Credit Card Fraud Detection dataset. Cross-dataset evaluations using a simulated transaction dataset demonstrate consistent generalization, achieving a recall of 95.12% and ROC-AUC of 98.60%. An ablation study underscores the impact of attention mechanisms and contrastive learning, with the combined approach improving F1-score by up to 2.64%. Additionally, SHAP-based analysis reveals the importance of key features such as transaction amount and PCA-derived components in model decisions, enhancing explainability. The results establish the proposed framework as a robust, interpretable, and scalable solution for fraud prevention in digital payment systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信