StreakNet-Arch:一种基于抗散射网络的水下载波激光雷达成像体系结构

IF 13.7
Xuelong Li;Hongjun An;Haofei Zhao;Guangying Li;Bo Liu;Xing Wang;Guanghua Cheng;Guojun Wu;Zhe Sun
{"title":"StreakNet-Arch:一种基于抗散射网络的水下载波激光雷达成像体系结构","authors":"Xuelong Li;Hongjun An;Haofei Zhao;Guangying Li;Bo Liu;Xing Wang;Guanghua Cheng;Guojun Wu;Zhe Sun","doi":"10.1109/TIP.2025.3586431","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce StreakNet-Arch, a real-time, end-to-end binary-classification framework based on our self-developed Underwater Carrier LiDAR-Radar (UCLR) that embeds Self-Attention and our novel Double Branch Cross Attention (DBC-Attention) to enhance scatter suppression. Under controlled water tank validation conditions, StreakNet-Arch with Self-Attention or DBC-Attention outperforms traditional bandpass filtering and achieves higher <inline-formula> <tex-math>$F_{1}$ </tex-math></inline-formula> scores than learning-based MP networks and CNNs at comparable model size and complexity. Real-time benchmarks on an NVIDIA RTX 3060 show a constant Average Imaging Time (54 to 84 ms) regardless of frame count, versus a linear increase (58 to 1,257 ms) for conventional methods. To facilitate further research, we contribute a publicly available streak-tube camera image dataset contains 2,695,168 real-world underwater 3D point cloud data. More importantly, we validate our UCLR system in a South China Sea trial, reaching an error of 46mm for 3D target at 1,000 m depth and 20 m range. Source code and data are available at <uri>https://github.com/BestAnHongjun/StreakNet</uri>","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"4357-4370"},"PeriodicalIF":13.7000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"StreakNet-Arch: An Anti-Scattering Network-Based Architecture for Underwater Carrier LiDAR-Radar Imaging\",\"authors\":\"Xuelong Li;Hongjun An;Haofei Zhao;Guangying Li;Bo Liu;Xing Wang;Guanghua Cheng;Guojun Wu;Zhe Sun\",\"doi\":\"10.1109/TIP.2025.3586431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce StreakNet-Arch, a real-time, end-to-end binary-classification framework based on our self-developed Underwater Carrier LiDAR-Radar (UCLR) that embeds Self-Attention and our novel Double Branch Cross Attention (DBC-Attention) to enhance scatter suppression. Under controlled water tank validation conditions, StreakNet-Arch with Self-Attention or DBC-Attention outperforms traditional bandpass filtering and achieves higher <inline-formula> <tex-math>$F_{1}$ </tex-math></inline-formula> scores than learning-based MP networks and CNNs at comparable model size and complexity. Real-time benchmarks on an NVIDIA RTX 3060 show a constant Average Imaging Time (54 to 84 ms) regardless of frame count, versus a linear increase (58 to 1,257 ms) for conventional methods. To facilitate further research, we contribute a publicly available streak-tube camera image dataset contains 2,695,168 real-world underwater 3D point cloud data. More importantly, we validate our UCLR system in a South China Sea trial, reaching an error of 46mm for 3D target at 1,000 m depth and 20 m range. Source code and data are available at <uri>https://github.com/BestAnHongjun/StreakNet</uri>\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"34 \",\"pages\":\"4357-4370\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11079880/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11079880/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了基于自主研发的水下载波激光雷达(UCLR)的实时端到端二分类框架StreakNet-Arch,该框架嵌入了自注意和新型双分支交叉注意(DBC-Attention)来增强散射抑制。在受控的水箱验证条件下,具有自注意或dbc -注意的StreakNet-Arch优于传统的带通滤波,并且在相同的模型大小和复杂性下,比基于学习的MP网络和cnn获得更高的$F_{1}$分数。NVIDIA RTX 3060的实时基准测试显示,无论帧数如何,平均成像时间都是恒定的(54至84毫秒),而传统方法的平均成像时间是线性增加的(58至1,257毫秒)。为了促进进一步的研究,我们提供了一个公开可用的条纹管相机图像数据集,其中包含2,695,168个真实水下3D点云数据。更重要的是,我们在南海试验中验证了我们的UCLR系统,在1000米深度和20米距离的3D目标上达到了46毫米的误差。源代码和数据可从https://github.com/BestAnHongjun/StreakNet获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
StreakNet-Arch: An Anti-Scattering Network-Based Architecture for Underwater Carrier LiDAR-Radar Imaging
In this paper, we introduce StreakNet-Arch, a real-time, end-to-end binary-classification framework based on our self-developed Underwater Carrier LiDAR-Radar (UCLR) that embeds Self-Attention and our novel Double Branch Cross Attention (DBC-Attention) to enhance scatter suppression. Under controlled water tank validation conditions, StreakNet-Arch with Self-Attention or DBC-Attention outperforms traditional bandpass filtering and achieves higher $F_{1}$ scores than learning-based MP networks and CNNs at comparable model size and complexity. Real-time benchmarks on an NVIDIA RTX 3060 show a constant Average Imaging Time (54 to 84 ms) regardless of frame count, versus a linear increase (58 to 1,257 ms) for conventional methods. To facilitate further research, we contribute a publicly available streak-tube camera image dataset contains 2,695,168 real-world underwater 3D point cloud data. More importantly, we validate our UCLR system in a South China Sea trial, reaching an error of 46mm for 3D target at 1,000 m depth and 20 m range. Source code and data are available at https://github.com/BestAnHongjun/StreakNet
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信