后:用于rbt跟踪的基于注意力的融合路由器

IF 13.7
Andong Lu;Wanyu Wang;Chenglong Li;Jin Tang;Bin Luo
{"title":"后:用于rbt跟踪的基于注意力的融合路由器","authors":"Andong Lu;Wanyu Wang;Chenglong Li;Jin Tang;Bin Luo","doi":"10.1109/TIP.2025.3586467","DOIUrl":null,"url":null,"abstract":"Multi-modal feature fusion as a core investigative component of RGBT tracking emerges numerous fusion studies in recent years. However, existing RGBT tracking methods widely adopt fixed fusion structures to integrate multi-modal feature, which are hard to handle various challenges in dynamic scenarios. To address this problem, this work presents a novel Attention-based Fusion router called AFTER, which optimizes the fusion structure to adapt to the dynamic challenging scenarios, for robust RGBT tracking. In particular, we design a fusion structure space based on the hierarchical attention network, each attention-based fusion unit corresponding to a fusion operation and a combination of these attention units corresponding to a fusion structure. Through optimizing the combination of attention-based fusion units, we can dynamically select the fusion structure to adapt to various challenging scenarios. Unlike complex search of different structures in neural architecture search algorithms, we develop a dynamic routing algorithm, which equips each attention-based fusion unit with a router, to predict the combination weights for efficient optimization of the fusion structure. Extensive experiments on five mainstream RGBT tracking datasets demonstrate the superior performance of the proposed AFTER against state-of-the-art RGBT trackers. We release the code in <uri>https://github.com/Alexadlu/AFter</uri>","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"4386-4401"},"PeriodicalIF":13.7000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AFTER: Attention-Based Fusion Router for RGBT Tracking\",\"authors\":\"Andong Lu;Wanyu Wang;Chenglong Li;Jin Tang;Bin Luo\",\"doi\":\"10.1109/TIP.2025.3586467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-modal feature fusion as a core investigative component of RGBT tracking emerges numerous fusion studies in recent years. However, existing RGBT tracking methods widely adopt fixed fusion structures to integrate multi-modal feature, which are hard to handle various challenges in dynamic scenarios. To address this problem, this work presents a novel Attention-based Fusion router called AFTER, which optimizes the fusion structure to adapt to the dynamic challenging scenarios, for robust RGBT tracking. In particular, we design a fusion structure space based on the hierarchical attention network, each attention-based fusion unit corresponding to a fusion operation and a combination of these attention units corresponding to a fusion structure. Through optimizing the combination of attention-based fusion units, we can dynamically select the fusion structure to adapt to various challenging scenarios. Unlike complex search of different structures in neural architecture search algorithms, we develop a dynamic routing algorithm, which equips each attention-based fusion unit with a router, to predict the combination weights for efficient optimization of the fusion structure. Extensive experiments on five mainstream RGBT tracking datasets demonstrate the superior performance of the proposed AFTER against state-of-the-art RGBT trackers. We release the code in <uri>https://github.com/Alexadlu/AFter</uri>\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"34 \",\"pages\":\"4386-4401\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11079869/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11079869/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多模态特征融合作为lgbt跟踪研究的核心组成部分,近年来出现了大量的融合研究。然而,现有的rbt跟踪方法大多采用固定的融合结构来融合多模态特征,难以应对动态场景下的各种挑战。为了解决这个问题,本工作提出了一种新的基于注意力的融合路由器,称为AFTER,它优化融合结构以适应动态挑战场景,实现鲁棒的RGBT跟踪。特别地,我们设计了一个基于分层注意网络的融合结构空间,每个基于注意的融合单元对应一个融合操作,这些注意单元的组合对应一个融合结构。通过优化基于注意力的融合单元组合,我们可以动态选择融合结构以适应各种具有挑战性的场景。与神经结构搜索算法中不同结构的复杂搜索不同,我们开发了一种动态路由算法,该算法为每个基于注意力的融合单元配备一个路由,以预测组合权值,从而实现融合结构的有效优化。在五种主流RGBT跟踪数据集上进行的大量实验表明,所提出的AFTER与最先进的RGBT跟踪器相比具有优越的性能。我们在https://github.com/Alexadlu/AFter中发布了代码
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AFTER: Attention-Based Fusion Router for RGBT Tracking
Multi-modal feature fusion as a core investigative component of RGBT tracking emerges numerous fusion studies in recent years. However, existing RGBT tracking methods widely adopt fixed fusion structures to integrate multi-modal feature, which are hard to handle various challenges in dynamic scenarios. To address this problem, this work presents a novel Attention-based Fusion router called AFTER, which optimizes the fusion structure to adapt to the dynamic challenging scenarios, for robust RGBT tracking. In particular, we design a fusion structure space based on the hierarchical attention network, each attention-based fusion unit corresponding to a fusion operation and a combination of these attention units corresponding to a fusion structure. Through optimizing the combination of attention-based fusion units, we can dynamically select the fusion structure to adapt to various challenging scenarios. Unlike complex search of different structures in neural architecture search algorithms, we develop a dynamic routing algorithm, which equips each attention-based fusion unit with a router, to predict the combination weights for efficient optimization of the fusion structure. Extensive experiments on five mainstream RGBT tracking datasets demonstrate the superior performance of the proposed AFTER against state-of-the-art RGBT trackers. We release the code in https://github.com/Alexadlu/AFter
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信