{"title":"希尔伯特空间中高斯核及相关解析核的近似","authors":"Toni Karvonen, Yuya Suzuki","doi":"10.1093/imanum/draf050","DOIUrl":null,"url":null,"abstract":"We consider linear approximation based on function evaluations in reproducing kernel Hilbert spaces of certain analytic weighted power series kernels and stationary kernels on the interval $[-1,1]$. Both classes contain the popular Gaussian kernel $K(x, y) = \\exp (-\\tfrac{1}{2}\\varepsilon ^{2}(x-y)^{2})$. For weighted power series kernels we derive almost matching upper and lower bounds on the worst-case error. When applied to the Gaussian kernel our results state that, up to a sub-exponential factor, the $n$th minimal error decays as $(\\varepsilon /2)^{n} (n!)^{-1/2}$. The proofs are based on weighted polynomial interpolation and classical polynomial coefficient estimates that we use to bound the Hilbert space norm of a weighted polynomial fooling function.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"9 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation in Hilbert spaces of the Gaussian and related analytic kernels\",\"authors\":\"Toni Karvonen, Yuya Suzuki\",\"doi\":\"10.1093/imanum/draf050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider linear approximation based on function evaluations in reproducing kernel Hilbert spaces of certain analytic weighted power series kernels and stationary kernels on the interval $[-1,1]$. Both classes contain the popular Gaussian kernel $K(x, y) = \\\\exp (-\\\\tfrac{1}{2}\\\\varepsilon ^{2}(x-y)^{2})$. For weighted power series kernels we derive almost matching upper and lower bounds on the worst-case error. When applied to the Gaussian kernel our results state that, up to a sub-exponential factor, the $n$th minimal error decays as $(\\\\varepsilon /2)^{n} (n!)^{-1/2}$. The proofs are based on weighted polynomial interpolation and classical polynomial coefficient estimates that we use to bound the Hilbert space norm of a weighted polynomial fooling function.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/draf050\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf050","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Approximation in Hilbert spaces of the Gaussian and related analytic kernels
We consider linear approximation based on function evaluations in reproducing kernel Hilbert spaces of certain analytic weighted power series kernels and stationary kernels on the interval $[-1,1]$. Both classes contain the popular Gaussian kernel $K(x, y) = \exp (-\tfrac{1}{2}\varepsilon ^{2}(x-y)^{2})$. For weighted power series kernels we derive almost matching upper and lower bounds on the worst-case error. When applied to the Gaussian kernel our results state that, up to a sub-exponential factor, the $n$th minimal error decays as $(\varepsilon /2)^{n} (n!)^{-1/2}$. The proofs are based on weighted polynomial interpolation and classical polynomial coefficient estimates that we use to bound the Hilbert space norm of a weighted polynomial fooling function.
期刊介绍:
The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.