希尔伯特空间中高斯核及相关解析核的近似

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Toni Karvonen, Yuya Suzuki
{"title":"希尔伯特空间中高斯核及相关解析核的近似","authors":"Toni Karvonen, Yuya Suzuki","doi":"10.1093/imanum/draf050","DOIUrl":null,"url":null,"abstract":"We consider linear approximation based on function evaluations in reproducing kernel Hilbert spaces of certain analytic weighted power series kernels and stationary kernels on the interval $[-1,1]$. Both classes contain the popular Gaussian kernel $K(x, y) = \\exp (-\\tfrac{1}{2}\\varepsilon ^{2}(x-y)^{2})$. For weighted power series kernels we derive almost matching upper and lower bounds on the worst-case error. When applied to the Gaussian kernel our results state that, up to a sub-exponential factor, the $n$th minimal error decays as $(\\varepsilon /2)^{n} (n!)^{-1/2}$. The proofs are based on weighted polynomial interpolation and classical polynomial coefficient estimates that we use to bound the Hilbert space norm of a weighted polynomial fooling function.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"9 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation in Hilbert spaces of the Gaussian and related analytic kernels\",\"authors\":\"Toni Karvonen, Yuya Suzuki\",\"doi\":\"10.1093/imanum/draf050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider linear approximation based on function evaluations in reproducing kernel Hilbert spaces of certain analytic weighted power series kernels and stationary kernels on the interval $[-1,1]$. Both classes contain the popular Gaussian kernel $K(x, y) = \\\\exp (-\\\\tfrac{1}{2}\\\\varepsilon ^{2}(x-y)^{2})$. For weighted power series kernels we derive almost matching upper and lower bounds on the worst-case error. When applied to the Gaussian kernel our results state that, up to a sub-exponential factor, the $n$th minimal error decays as $(\\\\varepsilon /2)^{n} (n!)^{-1/2}$. The proofs are based on weighted polynomial interpolation and classical polynomial coefficient estimates that we use to bound the Hilbert space norm of a weighted polynomial fooling function.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/draf050\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf050","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在区间$[-1,1]$上考虑基于函数求值的线性逼近方法再现某些解析加权幂级数核和平稳核的核Hilbert空间。这两个类都包含流行的高斯核$K(x, y) = \exp (-\tfrac{1}{2}\varepsilon ^{2}(x-y)^{2})$。对于加权幂级数核,我们得到了最坏情况误差几乎匹配的上界和下界。当应用于高斯核时,我们的结果表明,直到次指数因子,$n$最小误差衰减为$(\varepsilon /2)^{n} (n!)^{-1/2}$。这些证明是基于加权多项式插值和经典多项式系数估计,我们使用它们来约束加权多项式欺骗函数的Hilbert空间范数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation in Hilbert spaces of the Gaussian and related analytic kernels
We consider linear approximation based on function evaluations in reproducing kernel Hilbert spaces of certain analytic weighted power series kernels and stationary kernels on the interval $[-1,1]$. Both classes contain the popular Gaussian kernel $K(x, y) = \exp (-\tfrac{1}{2}\varepsilon ^{2}(x-y)^{2})$. For weighted power series kernels we derive almost matching upper and lower bounds on the worst-case error. When applied to the Gaussian kernel our results state that, up to a sub-exponential factor, the $n$th minimal error decays as $(\varepsilon /2)^{n} (n!)^{-1/2}$. The proofs are based on weighted polynomial interpolation and classical polynomial coefficient estimates that we use to bound the Hilbert space norm of a weighted polynomial fooling function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信