{"title":"基于角度的高维鲁棒迁移学习。","authors":"Tian Gu, Yi Han, Rui Duan","doi":"10.1093/jrsssb/qkae111","DOIUrl":null,"url":null,"abstract":"<p><p>Transfer learning improves target model performance by leveraging data from related source populations, especially when target data are scarce. This study addresses the challenge of training high-dimensional regression models with limited target data in the presence of heterogeneous source populations. We focus on a practical setting where only parameter estimates of pretrained source models are available, rather than individual-level source data. For a single source model, we propose a novel angle-based transfer learning (angleTL) method that leverages concordance between source and target model parameters. AngleTL adapts to the signal strength of the target model, unifies several benchmark methods, and mitigates negative transfer when between-population heterogeneity is large. We extend angleTL to incorporate multiple source models, accounting for varying levels of relevance among them. Our high-dimensional asymptotic analysis provides insights into when a source model benefits the target model and demonstrates the superiority of angleTL over other methods. Extensive simulations validate these findings and highlight the feasibility of applying angleTL to transfer genetic risk prediction models across multiple biobanks.</p>","PeriodicalId":49982,"journal":{"name":"Journal of the Royal Statistical Society Series B-Statistical Methodology","volume":"87 3","pages":"723-745"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12256125/pdf/","citationCount":"0","resultStr":"{\"title\":\"Robust angle-based transfer learning in high dimensions.\",\"authors\":\"Tian Gu, Yi Han, Rui Duan\",\"doi\":\"10.1093/jrsssb/qkae111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transfer learning improves target model performance by leveraging data from related source populations, especially when target data are scarce. This study addresses the challenge of training high-dimensional regression models with limited target data in the presence of heterogeneous source populations. We focus on a practical setting where only parameter estimates of pretrained source models are available, rather than individual-level source data. For a single source model, we propose a novel angle-based transfer learning (angleTL) method that leverages concordance between source and target model parameters. AngleTL adapts to the signal strength of the target model, unifies several benchmark methods, and mitigates negative transfer when between-population heterogeneity is large. We extend angleTL to incorporate multiple source models, accounting for varying levels of relevance among them. Our high-dimensional asymptotic analysis provides insights into when a source model benefits the target model and demonstrates the superiority of angleTL over other methods. Extensive simulations validate these findings and highlight the feasibility of applying angleTL to transfer genetic risk prediction models across multiple biobanks.</p>\",\"PeriodicalId\":49982,\"journal\":{\"name\":\"Journal of the Royal Statistical Society Series B-Statistical Methodology\",\"volume\":\"87 3\",\"pages\":\"723-745\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12256125/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Royal Statistical Society Series B-Statistical Methodology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jrsssb/qkae111\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series B-Statistical Methodology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssb/qkae111","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Robust angle-based transfer learning in high dimensions.
Transfer learning improves target model performance by leveraging data from related source populations, especially when target data are scarce. This study addresses the challenge of training high-dimensional regression models with limited target data in the presence of heterogeneous source populations. We focus on a practical setting where only parameter estimates of pretrained source models are available, rather than individual-level source data. For a single source model, we propose a novel angle-based transfer learning (angleTL) method that leverages concordance between source and target model parameters. AngleTL adapts to the signal strength of the target model, unifies several benchmark methods, and mitigates negative transfer when between-population heterogeneity is large. We extend angleTL to incorporate multiple source models, accounting for varying levels of relevance among them. Our high-dimensional asymptotic analysis provides insights into when a source model benefits the target model and demonstrates the superiority of angleTL over other methods. Extensive simulations validate these findings and highlight the feasibility of applying angleTL to transfer genetic risk prediction models across multiple biobanks.
期刊介绍:
Series B (Statistical Methodology) aims to publish high quality papers on the methodological aspects of statistics and data science more broadly. The objective of papers should be to contribute to the understanding of statistical methodology and/or to develop and improve statistical methods; any mathematical theory should be directed towards these aims. The kinds of contribution considered include descriptions of new methods of collecting or analysing data, with the underlying theory, an indication of the scope of application and preferably a real example. Also considered are comparisons, critical evaluations and new applications of existing methods, contributions to probability theory which have a clear practical bearing (including the formulation and analysis of stochastic models), statistical computation or simulation where original methodology is involved and original contributions to the foundations of statistical science. Reviews of methodological techniques are also considered. A paper, even if correct and well presented, is likely to be rejected if it only presents straightforward special cases of previously published work, if it is of mathematical interest only, if it is too long in relation to the importance of the new material that it contains or if it is dominated by computations or simulations of a routine nature.