用于中性粒细胞介导的细胞杀伤的三特异性SEED抗体。

IF 7.3 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
mAbs Pub Date : 2025-12-01 Epub Date: 2025-07-15 DOI:10.1080/19420862.2025.2532851
Veronica Natale, Gergely Heves, Katharina Stadlbauer, Florian Rüker, Vanessa Siegmund, Lukas Pekar, Stefan Zielonka, Lars Toleikis, Stefan Becker, Gordana Wozniak-Knopp
{"title":"用于中性粒细胞介导的细胞杀伤的三特异性SEED抗体。","authors":"Veronica Natale, Gergely Heves, Katharina Stadlbauer, Florian Rüker, Vanessa Siegmund, Lukas Pekar, Stefan Zielonka, Lars Toleikis, Stefan Becker, Gordana Wozniak-Knopp","doi":"10.1080/19420862.2025.2532851","DOIUrl":null,"url":null,"abstract":"<p><p>Immunoglobulin (Ig) A has attracted interest as a proposed therapeutic agent due to its ability to engage cell groups differently compared to an IgG scaffold and elicit tumor eradication. Further, its multimeric forms enable increased flexibility in the design of available paratopes. The latter is particularly advantageous for bi- and multispecific antibody formats, which are unparalleled in their enhanced selectivity and unique biological functions. We engineered bispecific heterodimeric IgA-based antibodies using the strand-exchanged engineered domain (SEED) technology, which relies on intertwined segments of IgA and IgG in the C<sub>H</sub>3 domain, and applied mutagenesis to introduce two additional binding sites to enable the interaction of IgA-Fc with the myeloid cell-activating receptor CD89 (FcαR). These antibodies exhibited good biophysical properties and thermostability similar to the parental SEED molecule. Binding capacity to both antigens recognized by variable domains, epidermal growth factor receptor (EGFR) and receptor tyrosine kinase like orphan receptor 1 (ROR1), was not impaired, and in contrast to the original SEED-IgA, trispecific mutants could bind to CD89-expressing cells, mediate tumor cell-effector cell clustering, and induce neutrophil-mediated specific lysis of tumor cells. Trispecific design was applicable to both SEED-IgA1 and -IgA2 scaffolds. Interestingly, HEK-expressed mutants featured a CH2-linked N-glycan pattern more similar to wild-type IgA, with reduced core fucosylation in comparison with IgA-SEED. Collectively, the presented format combines the mobilization of CD89-positive effector cells with the flexibility of incorporating antigen specificities of choice into the variable domains, and thus is a promising basis for biochemically stable multispecific IgA with high therapeutic potential.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"17 1","pages":"2532851"},"PeriodicalIF":7.3000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12269659/pdf/","citationCount":"0","resultStr":"{\"title\":\"Trispecific SEED antibodies engineered for neutrophil-mediated cell killing.\",\"authors\":\"Veronica Natale, Gergely Heves, Katharina Stadlbauer, Florian Rüker, Vanessa Siegmund, Lukas Pekar, Stefan Zielonka, Lars Toleikis, Stefan Becker, Gordana Wozniak-Knopp\",\"doi\":\"10.1080/19420862.2025.2532851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immunoglobulin (Ig) A has attracted interest as a proposed therapeutic agent due to its ability to engage cell groups differently compared to an IgG scaffold and elicit tumor eradication. Further, its multimeric forms enable increased flexibility in the design of available paratopes. The latter is particularly advantageous for bi- and multispecific antibody formats, which are unparalleled in their enhanced selectivity and unique biological functions. We engineered bispecific heterodimeric IgA-based antibodies using the strand-exchanged engineered domain (SEED) technology, which relies on intertwined segments of IgA and IgG in the C<sub>H</sub>3 domain, and applied mutagenesis to introduce two additional binding sites to enable the interaction of IgA-Fc with the myeloid cell-activating receptor CD89 (FcαR). These antibodies exhibited good biophysical properties and thermostability similar to the parental SEED molecule. Binding capacity to both antigens recognized by variable domains, epidermal growth factor receptor (EGFR) and receptor tyrosine kinase like orphan receptor 1 (ROR1), was not impaired, and in contrast to the original SEED-IgA, trispecific mutants could bind to CD89-expressing cells, mediate tumor cell-effector cell clustering, and induce neutrophil-mediated specific lysis of tumor cells. Trispecific design was applicable to both SEED-IgA1 and -IgA2 scaffolds. Interestingly, HEK-expressed mutants featured a CH2-linked N-glycan pattern more similar to wild-type IgA, with reduced core fucosylation in comparison with IgA-SEED. Collectively, the presented format combines the mobilization of CD89-positive effector cells with the flexibility of incorporating antigen specificities of choice into the variable domains, and thus is a promising basis for biochemically stable multispecific IgA with high therapeutic potential.</p>\",\"PeriodicalId\":18206,\"journal\":{\"name\":\"mAbs\",\"volume\":\"17 1\",\"pages\":\"2532851\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12269659/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mAbs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19420862.2025.2532851\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mAbs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19420862.2025.2532851","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

免疫球蛋白(Ig) A作为一种拟议的治疗剂引起了人们的兴趣,因为它与IgG支架相比能够不同地参与细胞群并引发肿瘤根除。此外,它的多聚体形式增加了设计可用顶楼的灵活性。后者对于双特异性和多特异性抗体格式尤其有利,它们在增强的选择性和独特的生物学功能方面是无与伦比的。我们利用链交换工程结构域(SEED)技术设计了基于IgA的双特异性异二聚体抗体,该技术依赖于IgA和IgG在CH3结构域的交织片段,并应用诱变技术引入了两个额外的结合位点,使IgA- fc与髓细胞活化受体CD89 (FcαR)相互作用。这些抗体表现出与亲本SEED分子相似的良好生物物理特性和热稳定性。与表皮生长因子受体(epidermal growth factor receptor, EGFR)和酪氨酸激酶样孤儿受体1 (receptor tyrosine kinase like orphan receptor, ROR1)这两种可变结构域识别的抗原的结合能力均未受损,与最初的SEED-IgA不同,三特异性突变体可以结合表达cd89的细胞,介导肿瘤细胞效应细胞聚集,并诱导中性粒细胞介导的肿瘤细胞特异性裂解。三特异性设计适用于SEED-IgA1和-IgA2支架。有趣的是,hek表达的突变体具有与野生型IgA更相似的ch2连接的n -聚糖模式,与IgA- seed相比,核心聚焦化程度降低。总的来说,所提出的格式结合了cd89阳性效应细胞的动员和将抗原特异性选择纳入可变结构域的灵活性,因此是具有高治疗潜力的生化稳定的多特异性IgA的有希望的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trispecific SEED antibodies engineered for neutrophil-mediated cell killing.

Immunoglobulin (Ig) A has attracted interest as a proposed therapeutic agent due to its ability to engage cell groups differently compared to an IgG scaffold and elicit tumor eradication. Further, its multimeric forms enable increased flexibility in the design of available paratopes. The latter is particularly advantageous for bi- and multispecific antibody formats, which are unparalleled in their enhanced selectivity and unique biological functions. We engineered bispecific heterodimeric IgA-based antibodies using the strand-exchanged engineered domain (SEED) technology, which relies on intertwined segments of IgA and IgG in the CH3 domain, and applied mutagenesis to introduce two additional binding sites to enable the interaction of IgA-Fc with the myeloid cell-activating receptor CD89 (FcαR). These antibodies exhibited good biophysical properties and thermostability similar to the parental SEED molecule. Binding capacity to both antigens recognized by variable domains, epidermal growth factor receptor (EGFR) and receptor tyrosine kinase like orphan receptor 1 (ROR1), was not impaired, and in contrast to the original SEED-IgA, trispecific mutants could bind to CD89-expressing cells, mediate tumor cell-effector cell clustering, and induce neutrophil-mediated specific lysis of tumor cells. Trispecific design was applicable to both SEED-IgA1 and -IgA2 scaffolds. Interestingly, HEK-expressed mutants featured a CH2-linked N-glycan pattern more similar to wild-type IgA, with reduced core fucosylation in comparison with IgA-SEED. Collectively, the presented format combines the mobilization of CD89-positive effector cells with the flexibility of incorporating antigen specificities of choice into the variable domains, and thus is a promising basis for biochemically stable multispecific IgA with high therapeutic potential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
mAbs
mAbs 工程技术-仪器仪表
CiteScore
10.70
自引率
11.30%
发文量
77
审稿时长
6-12 weeks
期刊介绍: mAbs is a multi-disciplinary journal dedicated to the art and science of antibody research and development. The journal has a strong scientific and medical focus, but also strives to serve a broader readership. The articles are thus of interest to scientists, clinical researchers, and physicians, as well as the wider mAb community, including our readers involved in technology transfer, legal issues, investment, strategic planning and the regulation of therapeutics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信