Scotland E Farley, Jennifer E Kyle, Helene Jahn, Lisa M Bramer, Paul D Piehowski, Athena A Shepmoes, Brooke Ld Kaiser, Sarai M Williams, Josie G Eder, Carsten Schultz, Fikadu G Tafesse
{"title":"综合脂质组学和蛋白质组学分析揭示了SARS-CoV-2变异对代谢网络的破坏。","authors":"Scotland E Farley, Jennifer E Kyle, Helene Jahn, Lisa M Bramer, Paul D Piehowski, Athena A Shepmoes, Brooke Ld Kaiser, Sarai M Williams, Josie G Eder, Carsten Schultz, Fikadu G Tafesse","doi":"10.1016/j.jlr.2025.100860","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid evolution of SARS-CoV-2 has produced myriad viral strains with increasing transmissibility and capacity for immune evasion. While effective vaccination campaigns have reduced the fatalities associated with SARS-CoV-2, infections continue, and a detailed understanding of how this virus manipulates host biochemical pathways remains elusive. We asked both whether the patterns of host lipid rewiring remained consistent across variants and whether the changes in the abundance of lipid classes are related to changes in the expression of the enzymes involved in their biosynthesis. We compared global nontargeted lipidomics on A549-ACE2 cells infected with the delta variant (B.1.617.2), or the omicron (B.1.1.529) variant to our previous results of global nontargeted lipidomics on A549-ACE2 cells infected with the original WA1 strain, and further performed quantitative proteomics to assess changes in the host proteome. We found that metabolic rewiring, both on the lipid and the enzymatic level, is remarkably consistent across all three variants. We further mapped changes in the expression of host metabolic enzymes, linking enzyme expression to alterations in the abundance of specific lipids during infection. This analysis identified key proteins related to virus-mediated changes in lipid abundance, including fatty acid synthase (FASN), lysosomal acid lipase (LIPA), and ORMDL, a regulator of sphingolipid biosynthesis. These integrated lipidomic and proteomic experiments shed light on the importance of the complex network of host metabolism networks that support SARS-CoV-2 infection, and suggest that lipid metabolism may be a promising avenue for uncovering conserved therapeutic targets.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100860"},"PeriodicalIF":5.0000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated lipidomic and proteomic profiling reveals metabolic network disruption by SARS-CoV-2 variants.\",\"authors\":\"Scotland E Farley, Jennifer E Kyle, Helene Jahn, Lisa M Bramer, Paul D Piehowski, Athena A Shepmoes, Brooke Ld Kaiser, Sarai M Williams, Josie G Eder, Carsten Schultz, Fikadu G Tafesse\",\"doi\":\"10.1016/j.jlr.2025.100860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid evolution of SARS-CoV-2 has produced myriad viral strains with increasing transmissibility and capacity for immune evasion. While effective vaccination campaigns have reduced the fatalities associated with SARS-CoV-2, infections continue, and a detailed understanding of how this virus manipulates host biochemical pathways remains elusive. We asked both whether the patterns of host lipid rewiring remained consistent across variants and whether the changes in the abundance of lipid classes are related to changes in the expression of the enzymes involved in their biosynthesis. We compared global nontargeted lipidomics on A549-ACE2 cells infected with the delta variant (B.1.617.2), or the omicron (B.1.1.529) variant to our previous results of global nontargeted lipidomics on A549-ACE2 cells infected with the original WA1 strain, and further performed quantitative proteomics to assess changes in the host proteome. We found that metabolic rewiring, both on the lipid and the enzymatic level, is remarkably consistent across all three variants. We further mapped changes in the expression of host metabolic enzymes, linking enzyme expression to alterations in the abundance of specific lipids during infection. This analysis identified key proteins related to virus-mediated changes in lipid abundance, including fatty acid synthase (FASN), lysosomal acid lipase (LIPA), and ORMDL, a regulator of sphingolipid biosynthesis. These integrated lipidomic and proteomic experiments shed light on the importance of the complex network of host metabolism networks that support SARS-CoV-2 infection, and suggest that lipid metabolism may be a promising avenue for uncovering conserved therapeutic targets.</p>\",\"PeriodicalId\":16209,\"journal\":{\"name\":\"Journal of Lipid Research\",\"volume\":\" \",\"pages\":\"100860\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Lipid Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jlr.2025.100860\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2025.100860","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Integrated lipidomic and proteomic profiling reveals metabolic network disruption by SARS-CoV-2 variants.
The rapid evolution of SARS-CoV-2 has produced myriad viral strains with increasing transmissibility and capacity for immune evasion. While effective vaccination campaigns have reduced the fatalities associated with SARS-CoV-2, infections continue, and a detailed understanding of how this virus manipulates host biochemical pathways remains elusive. We asked both whether the patterns of host lipid rewiring remained consistent across variants and whether the changes in the abundance of lipid classes are related to changes in the expression of the enzymes involved in their biosynthesis. We compared global nontargeted lipidomics on A549-ACE2 cells infected with the delta variant (B.1.617.2), or the omicron (B.1.1.529) variant to our previous results of global nontargeted lipidomics on A549-ACE2 cells infected with the original WA1 strain, and further performed quantitative proteomics to assess changes in the host proteome. We found that metabolic rewiring, both on the lipid and the enzymatic level, is remarkably consistent across all three variants. We further mapped changes in the expression of host metabolic enzymes, linking enzyme expression to alterations in the abundance of specific lipids during infection. This analysis identified key proteins related to virus-mediated changes in lipid abundance, including fatty acid synthase (FASN), lysosomal acid lipase (LIPA), and ORMDL, a regulator of sphingolipid biosynthesis. These integrated lipidomic and proteomic experiments shed light on the importance of the complex network of host metabolism networks that support SARS-CoV-2 infection, and suggest that lipid metabolism may be a promising avenue for uncovering conserved therapeutic targets.
期刊介绍:
The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.