{"title":"CYP51A1在健康和疾病中的作用:从固醇代谢到调节细胞死亡。","authors":"Fangquan Chen, RuiRui Liang, Jieting Zhang, Rui Kang, Daolin Tang, Jiao Liu","doi":"10.1038/s41420-025-02621-7","DOIUrl":null,"url":null,"abstract":"<p><p>How do cells precisely coordinate sterol metabolism with survival and death signals in diverse physiological and pathological contexts? This fundamental question has gained increasing attention as accumulating evidence reveals that enzymes traditionally associated with lipid biosynthesis may have unexpected regulatory functions beyond metabolism. Cytochrome P450 family 51 subfamily A member 1 (CYP51A1), a conserved sterol 14α-demethylase essential for cholesterol synthesis, exemplifies this emerging concept. Although well-characterized as an antifungal drug target in microorganisms, the roles of human CYP51A1 in development, cell death regulation, and disease pathogenesis remain underexplored. Recent studies have uncovered that CYP51A1 not only contributes to cholesterol homeostasis but also modulates multiple forms of regulated cell death-including apoptosis, ferroptosis, alkaliptosis, and pyroptosis-via sterol intermediates or cholesterol-independent mechanisms. Moreover, dysregulation of CYP51A1 has been implicated in a wide spectrum of diseases, such as cancer, cataracts, Antley-Bixler syndrome, autoimmune disorders, metabolic liver disease and neurodegeneration. In this review, we provide a comprehensive synthesis of CYP51A1's structure, regulatory networks, and non-canonical functions. We propose a unifying framework in which CYP51A1 integrates metabolic reprogramming and cell fate control, highlighting its potential as a therapeutic target across diverse human diseases.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"322"},"PeriodicalIF":6.1000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12260017/pdf/","citationCount":"0","resultStr":"{\"title\":\"CYP51A1 in health and disease: from sterol metabolism to regulated cell death.\",\"authors\":\"Fangquan Chen, RuiRui Liang, Jieting Zhang, Rui Kang, Daolin Tang, Jiao Liu\",\"doi\":\"10.1038/s41420-025-02621-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>How do cells precisely coordinate sterol metabolism with survival and death signals in diverse physiological and pathological contexts? This fundamental question has gained increasing attention as accumulating evidence reveals that enzymes traditionally associated with lipid biosynthesis may have unexpected regulatory functions beyond metabolism. Cytochrome P450 family 51 subfamily A member 1 (CYP51A1), a conserved sterol 14α-demethylase essential for cholesterol synthesis, exemplifies this emerging concept. Although well-characterized as an antifungal drug target in microorganisms, the roles of human CYP51A1 in development, cell death regulation, and disease pathogenesis remain underexplored. Recent studies have uncovered that CYP51A1 not only contributes to cholesterol homeostasis but also modulates multiple forms of regulated cell death-including apoptosis, ferroptosis, alkaliptosis, and pyroptosis-via sterol intermediates or cholesterol-independent mechanisms. Moreover, dysregulation of CYP51A1 has been implicated in a wide spectrum of diseases, such as cancer, cataracts, Antley-Bixler syndrome, autoimmune disorders, metabolic liver disease and neurodegeneration. In this review, we provide a comprehensive synthesis of CYP51A1's structure, regulatory networks, and non-canonical functions. We propose a unifying framework in which CYP51A1 integrates metabolic reprogramming and cell fate control, highlighting its potential as a therapeutic target across diverse human diseases.</p>\",\"PeriodicalId\":9735,\"journal\":{\"name\":\"Cell Death Discovery\",\"volume\":\"11 1\",\"pages\":\"322\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12260017/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41420-025-02621-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02621-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
CYP51A1 in health and disease: from sterol metabolism to regulated cell death.
How do cells precisely coordinate sterol metabolism with survival and death signals in diverse physiological and pathological contexts? This fundamental question has gained increasing attention as accumulating evidence reveals that enzymes traditionally associated with lipid biosynthesis may have unexpected regulatory functions beyond metabolism. Cytochrome P450 family 51 subfamily A member 1 (CYP51A1), a conserved sterol 14α-demethylase essential for cholesterol synthesis, exemplifies this emerging concept. Although well-characterized as an antifungal drug target in microorganisms, the roles of human CYP51A1 in development, cell death regulation, and disease pathogenesis remain underexplored. Recent studies have uncovered that CYP51A1 not only contributes to cholesterol homeostasis but also modulates multiple forms of regulated cell death-including apoptosis, ferroptosis, alkaliptosis, and pyroptosis-via sterol intermediates or cholesterol-independent mechanisms. Moreover, dysregulation of CYP51A1 has been implicated in a wide spectrum of diseases, such as cancer, cataracts, Antley-Bixler syndrome, autoimmune disorders, metabolic liver disease and neurodegeneration. In this review, we provide a comprehensive synthesis of CYP51A1's structure, regulatory networks, and non-canonical functions. We propose a unifying framework in which CYP51A1 integrates metabolic reprogramming and cell fate control, highlighting its potential as a therapeutic target across diverse human diseases.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.