临床环境中伦理人工智能的缓解部署策略。

IF 4.4 Q1 HEALTH CARE SCIENCES & SERVICES
Sahar Abdulrahman, Markus Trengove
{"title":"临床环境中伦理人工智能的缓解部署策略。","authors":"Sahar Abdulrahman, Markus Trengove","doi":"10.1136/bmjhci-2024-101363","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical diagnostic tools can disadvantage subgroups due to poor model generalisability, which can be caused by unrepresentative training data. Practical deployment solutions to mitigate harm for subgroups from models with differential performance have yet to be established. This paper will build on existing work that considers a selective deployment approach where poorly performing subgroups are excluded from deployments. Alternatively, the proposed 'mitigated deployment' strategy requires safety nets to be built into clinical workflows to safeguard under-represented groups in a universal deployment. This approach relies on human-artificial intelligence collaboration and postmarket evaluation to continually improve model performance across subgroups with real-world data. Using a real-world case study, the benefits and limitations of mitigated deployment are explored. This will add to the tools available to healthcare organisations when considering how to safely deploy models with differential performance across subgroups.</p>","PeriodicalId":9050,"journal":{"name":"BMJ Health & Care Informatics","volume":"32 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12258279/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mitigated deployment strategy for ethical AI in clinical settings.\",\"authors\":\"Sahar Abdulrahman, Markus Trengove\",\"doi\":\"10.1136/bmjhci-2024-101363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clinical diagnostic tools can disadvantage subgroups due to poor model generalisability, which can be caused by unrepresentative training data. Practical deployment solutions to mitigate harm for subgroups from models with differential performance have yet to be established. This paper will build on existing work that considers a selective deployment approach where poorly performing subgroups are excluded from deployments. Alternatively, the proposed 'mitigated deployment' strategy requires safety nets to be built into clinical workflows to safeguard under-represented groups in a universal deployment. This approach relies on human-artificial intelligence collaboration and postmarket evaluation to continually improve model performance across subgroups with real-world data. Using a real-world case study, the benefits and limitations of mitigated deployment are explored. This will add to the tools available to healthcare organisations when considering how to safely deploy models with differential performance across subgroups.</p>\",\"PeriodicalId\":9050,\"journal\":{\"name\":\"BMJ Health & Care Informatics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12258279/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMJ Health & Care Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1136/bmjhci-2024-101363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Health & Care Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmjhci-2024-101363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

由于缺乏代表性的训练数据,较差的模型通用性可能导致临床诊断工具对亚组不利。实际的部署解决方案,以减轻对具有不同性能的模型的子组的伤害尚未建立。本文将建立在现有工作的基础上,考虑一种选择性部署方法,将表现不佳的子组排除在部署之外。另外,拟议的“缓和部署”战略要求在临床工作流程中建立安全网,以在普遍部署中保护代表性不足的群体。这种方法依赖于人类与人工智能的协作和上市后评估,通过真实世界的数据不断提高模型跨子组的性能。通过实际案例研究,本文探讨了缓解部署的优点和局限性。这将增加医疗保健组织在考虑如何安全部署具有不同子组性能的模型时可用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mitigated deployment strategy for ethical AI in clinical settings.

Mitigated deployment strategy for ethical AI in clinical settings.

Mitigated deployment strategy for ethical AI in clinical settings.

Mitigated deployment strategy for ethical AI in clinical settings.

Clinical diagnostic tools can disadvantage subgroups due to poor model generalisability, which can be caused by unrepresentative training data. Practical deployment solutions to mitigate harm for subgroups from models with differential performance have yet to be established. This paper will build on existing work that considers a selective deployment approach where poorly performing subgroups are excluded from deployments. Alternatively, the proposed 'mitigated deployment' strategy requires safety nets to be built into clinical workflows to safeguard under-represented groups in a universal deployment. This approach relies on human-artificial intelligence collaboration and postmarket evaluation to continually improve model performance across subgroups with real-world data. Using a real-world case study, the benefits and limitations of mitigated deployment are explored. This will add to the tools available to healthcare organisations when considering how to safely deploy models with differential performance across subgroups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
4.90%
发文量
40
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信