人工智能全血膜扫描在明显白细胞减少血膜中爆炸检测中的优势。

IF 3 3区 医学 Q2 HEMATOLOGY
Geng Wang, Lin Zheng, Zhejun Fang, Guoju Luo, Qian Chen, Qi Qi Zhang, Bo Shen Wu, Xin Wang, Rongrong Cheng, Ping Deng, Binyao Zhang, Jing Jin, Wei Wu
{"title":"人工智能全血膜扫描在明显白细胞减少血膜中爆炸检测中的优势。","authors":"Geng Wang, Lin Zheng, Zhejun Fang, Guoju Luo, Qian Chen, Qi Qi Zhang, Bo Shen Wu, Xin Wang, Rongrong Cheng, Ping Deng, Binyao Zhang, Jing Jin, Wei Wu","doi":"10.1007/s00277-025-06473-0","DOIUrl":null,"url":null,"abstract":"<p><p>To evaluate performance of AI-assisted blast detection via whole blood film scanning in cases of severe leukopenia. From August to October 2023, we collected 157 patient specimens with white blood cell (WBC) counts of ≤2.0 × 10⁹/L. We then evaluated and compared the blast detection capabilities of an artificial intelligence-based system (Cygnus instrument) against the CellaVision DI-60 for WBC analysis. Additionally, this study aimed to assess the comparative performance of these two automated blood cell morphology analyzers based on their underlying operational principles. Following manual microscopy confirmation, 17 cases showing ≥ 1 blast cell in peripheral blood smear were identified among 157 specimens with WBC ≤ 2.0 × 10⁹/L. The Cygnus whole-slide scanning mode detected all 17 cases (sensitivity: 100%), whereas the Cygnus 200-cell mode detected only 9 cases (9/17), and the CellaVision DI-60 200-cell mode detected 8 cases (8/17). In leukopenic patients (WBC ≤2.0×10⁹/L), utilizing Cygnus' whole-slide scanning capability substantially improves blast identification rates, potentially enabling earlier detection of hematologic abnormalities.</p>","PeriodicalId":8068,"journal":{"name":"Annals of Hematology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advantages of AI-based whole blood film scanning for blast detection in markedly leucopenic blood films.\",\"authors\":\"Geng Wang, Lin Zheng, Zhejun Fang, Guoju Luo, Qian Chen, Qi Qi Zhang, Bo Shen Wu, Xin Wang, Rongrong Cheng, Ping Deng, Binyao Zhang, Jing Jin, Wei Wu\",\"doi\":\"10.1007/s00277-025-06473-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To evaluate performance of AI-assisted blast detection via whole blood film scanning in cases of severe leukopenia. From August to October 2023, we collected 157 patient specimens with white blood cell (WBC) counts of ≤2.0 × 10⁹/L. We then evaluated and compared the blast detection capabilities of an artificial intelligence-based system (Cygnus instrument) against the CellaVision DI-60 for WBC analysis. Additionally, this study aimed to assess the comparative performance of these two automated blood cell morphology analyzers based on their underlying operational principles. Following manual microscopy confirmation, 17 cases showing ≥ 1 blast cell in peripheral blood smear were identified among 157 specimens with WBC ≤ 2.0 × 10⁹/L. The Cygnus whole-slide scanning mode detected all 17 cases (sensitivity: 100%), whereas the Cygnus 200-cell mode detected only 9 cases (9/17), and the CellaVision DI-60 200-cell mode detected 8 cases (8/17). In leukopenic patients (WBC ≤2.0×10⁹/L), utilizing Cygnus' whole-slide scanning capability substantially improves blast identification rates, potentially enabling earlier detection of hematologic abnormalities.</p>\",\"PeriodicalId\":8068,\"journal\":{\"name\":\"Annals of Hematology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Hematology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00277-025-06473-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00277-025-06473-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

评价人工智能辅助全血膜扫描检测严重白细胞减少症的效果。2023年8 - 10月采集157例患者标本,白细胞计数≤2.0 × 10⁹/L。然后,我们评估并比较了基于人工智能的系统(Cygnus仪器)与CellaVision DI-60的爆炸检测能力,用于WBC分析。此外,本研究旨在根据其基本操作原理评估这两种自动化血细胞形态分析仪的比较性能。经人工显微镜确认,157例WBC≤2.0 × 10⁹/L的标本中,外周血涂片显示≥1个胚细胞的有17例。Cygnus全片扫描模式17例全部检出(灵敏度100%),Cygnus 200细胞扫描模式仅检出9例(9/17),CellaVision DI-60 200细胞扫描模式检出8例(8/17)。在白细胞减少患者(WBC≤2.0×10 9 /L)中,利用Cygnus的全切片扫描能力大大提高了blast的识别率,有可能更早地发现血液异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advantages of AI-based whole blood film scanning for blast detection in markedly leucopenic blood films.

To evaluate performance of AI-assisted blast detection via whole blood film scanning in cases of severe leukopenia. From August to October 2023, we collected 157 patient specimens with white blood cell (WBC) counts of ≤2.0 × 10⁹/L. We then evaluated and compared the blast detection capabilities of an artificial intelligence-based system (Cygnus instrument) against the CellaVision DI-60 for WBC analysis. Additionally, this study aimed to assess the comparative performance of these two automated blood cell morphology analyzers based on their underlying operational principles. Following manual microscopy confirmation, 17 cases showing ≥ 1 blast cell in peripheral blood smear were identified among 157 specimens with WBC ≤ 2.0 × 10⁹/L. The Cygnus whole-slide scanning mode detected all 17 cases (sensitivity: 100%), whereas the Cygnus 200-cell mode detected only 9 cases (9/17), and the CellaVision DI-60 200-cell mode detected 8 cases (8/17). In leukopenic patients (WBC ≤2.0×10⁹/L), utilizing Cygnus' whole-slide scanning capability substantially improves blast identification rates, potentially enabling earlier detection of hematologic abnormalities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Hematology
Annals of Hematology 医学-血液学
CiteScore
5.60
自引率
2.90%
发文量
304
审稿时长
2 months
期刊介绍: Annals of Hematology covers the whole spectrum of clinical and experimental hematology, hemostaseology, blood transfusion, and related aspects of medical oncology, including diagnosis and treatment of leukemias, lymphatic neoplasias and solid tumors, and transplantation of hematopoietic stem cells. Coverage includes general aspects of oncology, molecular biology and immunology as pertinent to problems of human blood disease. The journal is associated with the German Society for Hematology and Medical Oncology, and the Austrian Society for Hematology and Oncology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信