σσ*-卡宾通过量子隧道活化氢。

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Virinder Bhagat, , , Jan Meisner*, , and , J. Philipp Wagner*, 
{"title":"σσ*-卡宾通过量子隧道活化氢。","authors":"Virinder Bhagat,&nbsp;, ,&nbsp;Jan Meisner*,&nbsp;, and ,&nbsp;J. Philipp Wagner*,&nbsp;","doi":"10.1021/jacs.5c06016","DOIUrl":null,"url":null,"abstract":"<p >The electronic structure of carbenes arises from the occupation of a σ and a π frontier orbital. While parent methylene possesses a triplet ground state (σ<sup>1</sup>π<sup>1</sup>), substituents are capable of stabilizing the singlet as the ground state (σ<sup>2</sup>π<sup>0</sup> or σ<sup>0</sup>π<sup>2</sup>) by altering the frontier orbital energies. Here, we reveal that the 1,2[I]-shift isomer of 2-iodopyridine, the <i>N</i>-iodo Hammick intermediate, features a resonance between its carbene σ and N–I bond σ* orbitals, rendering them frontier orbitals. This singlet carbene is efficiently generated via UV photolysis of 2-iodopyridine in solid neon at 4.4 K and reacts with molecular hydrogen – but not deuterium – via N–I bond cleavage enabled by quantum tunneling. Instanton theory computations demonstrate the preference for a concerted hydrogen addition mechanism at elevated temperatures, while hydrogen atom abstraction dominates below 100 K despite a higher kinetic barrier for this process. Our findings introduce an unprecedented carbene class, unlocking new opportunities for reactivity and electronic structure explorations.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 39","pages":"35275–35282"},"PeriodicalIF":15.6000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/jacs.5c06016","citationCount":"0","resultStr":"{\"title\":\"Hydrogen Activation by a σσ*-Carbene Through Quantum Tunneling\",\"authors\":\"Virinder Bhagat,&nbsp;, ,&nbsp;Jan Meisner*,&nbsp;, and ,&nbsp;J. Philipp Wagner*,&nbsp;\",\"doi\":\"10.1021/jacs.5c06016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The electronic structure of carbenes arises from the occupation of a σ and a π frontier orbital. While parent methylene possesses a triplet ground state (σ<sup>1</sup>π<sup>1</sup>), substituents are capable of stabilizing the singlet as the ground state (σ<sup>2</sup>π<sup>0</sup> or σ<sup>0</sup>π<sup>2</sup>) by altering the frontier orbital energies. Here, we reveal that the 1,2[I]-shift isomer of 2-iodopyridine, the <i>N</i>-iodo Hammick intermediate, features a resonance between its carbene σ and N–I bond σ* orbitals, rendering them frontier orbitals. This singlet carbene is efficiently generated via UV photolysis of 2-iodopyridine in solid neon at 4.4 K and reacts with molecular hydrogen – but not deuterium – via N–I bond cleavage enabled by quantum tunneling. Instanton theory computations demonstrate the preference for a concerted hydrogen addition mechanism at elevated temperatures, while hydrogen atom abstraction dominates below 100 K despite a higher kinetic barrier for this process. Our findings introduce an unprecedented carbene class, unlocking new opportunities for reactivity and electronic structure explorations.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"147 39\",\"pages\":\"35275–35282\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/jacs.5c06016\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.5c06016\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c06016","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

碳烯的电子结构是由占据一个σ和一个π前沿轨道引起的。母体亚甲基具有三重态基态(σ1π1),取代基可以通过改变前沿轨道能量使单重态稳定为基态(σ2π0或σ0π2)。本文揭示了2-碘吡啶的1,2[I]移位异构体,即n -碘Hammick中间体,其碳原子σ和N-I键σ*轨道之间存在共振,使它们成为前沿轨道。这种单线态碳是通过固体氖中2-碘吡啶在4.4 K下的紫外光解有效地生成的,并通过量子隧穿激活的N-I键裂解与分子氢(而不是氘)反应。瞬子理论计算表明,在高温下更倾向于协调的氢加成机制,而在100 K以下,尽管这一过程的动力学势垒更高,但氢原子的提取占主导地位。我们的发现引入了前所未有的碳类,为反应性和电子结构探索提供了新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrogen Activation by a σσ*-Carbene Through Quantum Tunneling

The electronic structure of carbenes arises from the occupation of a σ and a π frontier orbital. While parent methylene possesses a triplet ground state (σ1π1), substituents are capable of stabilizing the singlet as the ground state (σ2π0 or σ0π2) by altering the frontier orbital energies. Here, we reveal that the 1,2[I]-shift isomer of 2-iodopyridine, the N-iodo Hammick intermediate, features a resonance between its carbene σ and N–I bond σ* orbitals, rendering them frontier orbitals. This singlet carbene is efficiently generated via UV photolysis of 2-iodopyridine in solid neon at 4.4 K and reacts with molecular hydrogen – but not deuterium – via N–I bond cleavage enabled by quantum tunneling. Instanton theory computations demonstrate the preference for a concerted hydrogen addition mechanism at elevated temperatures, while hydrogen atom abstraction dominates below 100 K despite a higher kinetic barrier for this process. Our findings introduce an unprecedented carbene class, unlocking new opportunities for reactivity and electronic structure explorations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信