{"title":"短暂饮食干预诱导小鼠健康脂肪组织扩张和代谢健康肥胖","authors":"Eri Wada, Hirotaka Hosono, Miyako Tanaka, Fumi Miyakawa, Kozue Ochi, Hiro Kohda, Shogo Tanno, Reon Shimano, Ayaka Ito, Yasuyuki Kitaura, Kazuya Ichihara, Akinobu Matsumoto, Tomoo Ogi, Noriko Satoh-Asahara, Toyoaki Murohara, Takayoshi Suganami","doi":"10.1096/fj.202501121R","DOIUrl":null,"url":null,"abstract":"<p>As obesity progresses, dynamic tissue remodeling of adipose tissue occurs over time, that is, adipocyte hypertrophy, chronic inflammation, and interstitial fibrosis. Some obese individuals exhibit healthy adipose tissue expansion, characterized by modest inflammation and fibrosis despite adipocyte hypertrophy, resulting in “Metabolically Healthy Obesity (MHO)”. In this study, we investigated the effects of transient weight loss on adipose tissue remodeling during the development of obesity. Male C57BL6/J mice received various types of transient weight loss treatments during diet-induced obesity. A 2-week weight loss intervention during the inflammatory phase promoted healthy adipose tissue expansion, reduced ectopic lipid accumulation, and improved glucose metabolism. In contrast, protocols with shorter duration and delayed intervention, failed to induce MHO. Since serum concentrations of ketone bodies were elevated during weight loss, we examined the effects of hyperketonemia on obesity-induced adipose tissue remodeling. Transient treatment with 1,3-butanediol (BD), which increased serum ketone body concentrations to levels similar to those observed during weight loss, induced healthy adipose tissue expansion and reduced hepatic steatosis even during continuous high-fat diet (HFD) feeding. Ketone bodies effectively suppressed activation of adipose tissue fibroblasts in vivo and in vitro. This study provides evidence that an appropriate dietary intervention can promote healthy adipose tissue expansion in mice, even after the regaining of weight, thereby leading to MHO. As the underlying mechanism, our data revealed a key role for ketone bodies in suppressing activation of adipose tissue fibroblasts. This study paves the way for nutritional approaches to induce MHO.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 14","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fj.202501121R","citationCount":"0","resultStr":"{\"title\":\"Transient Dietary Intervention Induces Healthy Adipose Tissue Expansion and Metabolically Healthy Obesity in Mice\",\"authors\":\"Eri Wada, Hirotaka Hosono, Miyako Tanaka, Fumi Miyakawa, Kozue Ochi, Hiro Kohda, Shogo Tanno, Reon Shimano, Ayaka Ito, Yasuyuki Kitaura, Kazuya Ichihara, Akinobu Matsumoto, Tomoo Ogi, Noriko Satoh-Asahara, Toyoaki Murohara, Takayoshi Suganami\",\"doi\":\"10.1096/fj.202501121R\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As obesity progresses, dynamic tissue remodeling of adipose tissue occurs over time, that is, adipocyte hypertrophy, chronic inflammation, and interstitial fibrosis. Some obese individuals exhibit healthy adipose tissue expansion, characterized by modest inflammation and fibrosis despite adipocyte hypertrophy, resulting in “Metabolically Healthy Obesity (MHO)”. In this study, we investigated the effects of transient weight loss on adipose tissue remodeling during the development of obesity. Male C57BL6/J mice received various types of transient weight loss treatments during diet-induced obesity. A 2-week weight loss intervention during the inflammatory phase promoted healthy adipose tissue expansion, reduced ectopic lipid accumulation, and improved glucose metabolism. In contrast, protocols with shorter duration and delayed intervention, failed to induce MHO. Since serum concentrations of ketone bodies were elevated during weight loss, we examined the effects of hyperketonemia on obesity-induced adipose tissue remodeling. Transient treatment with 1,3-butanediol (BD), which increased serum ketone body concentrations to levels similar to those observed during weight loss, induced healthy adipose tissue expansion and reduced hepatic steatosis even during continuous high-fat diet (HFD) feeding. Ketone bodies effectively suppressed activation of adipose tissue fibroblasts in vivo and in vitro. This study provides evidence that an appropriate dietary intervention can promote healthy adipose tissue expansion in mice, even after the regaining of weight, thereby leading to MHO. As the underlying mechanism, our data revealed a key role for ketone bodies in suppressing activation of adipose tissue fibroblasts. This study paves the way for nutritional approaches to induce MHO.</p>\",\"PeriodicalId\":50455,\"journal\":{\"name\":\"The FASEB Journal\",\"volume\":\"39 14\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fj.202501121R\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FASEB Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1096/fj.202501121R\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202501121R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Transient Dietary Intervention Induces Healthy Adipose Tissue Expansion and Metabolically Healthy Obesity in Mice
As obesity progresses, dynamic tissue remodeling of adipose tissue occurs over time, that is, adipocyte hypertrophy, chronic inflammation, and interstitial fibrosis. Some obese individuals exhibit healthy adipose tissue expansion, characterized by modest inflammation and fibrosis despite adipocyte hypertrophy, resulting in “Metabolically Healthy Obesity (MHO)”. In this study, we investigated the effects of transient weight loss on adipose tissue remodeling during the development of obesity. Male C57BL6/J mice received various types of transient weight loss treatments during diet-induced obesity. A 2-week weight loss intervention during the inflammatory phase promoted healthy adipose tissue expansion, reduced ectopic lipid accumulation, and improved glucose metabolism. In contrast, protocols with shorter duration and delayed intervention, failed to induce MHO. Since serum concentrations of ketone bodies were elevated during weight loss, we examined the effects of hyperketonemia on obesity-induced adipose tissue remodeling. Transient treatment with 1,3-butanediol (BD), which increased serum ketone body concentrations to levels similar to those observed during weight loss, induced healthy adipose tissue expansion and reduced hepatic steatosis even during continuous high-fat diet (HFD) feeding. Ketone bodies effectively suppressed activation of adipose tissue fibroblasts in vivo and in vitro. This study provides evidence that an appropriate dietary intervention can promote healthy adipose tissue expansion in mice, even after the regaining of weight, thereby leading to MHO. As the underlying mechanism, our data revealed a key role for ketone bodies in suppressing activation of adipose tissue fibroblasts. This study paves the way for nutritional approaches to induce MHO.
期刊介绍:
The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.