{"title":"基于有机/无机杂化材料的太阳能电池增材制造研究进展","authors":"Ziyue Ju, Ruichan Lv, Anees A. Ansari, Jun Lin","doi":"10.1002/inf2.70017","DOIUrl":null,"url":null,"abstract":"<p>The performance of optoelectronic materials has been booming developed. Yet, the traditional solar cell manufacturing techniques, such as spin coating and screen printing, have significant limitations that seem to hinder the further development of solar cell technology. Compared with traditional manufacturing processes, additive manufacturing (AM) boasts advantages such as flexibility in the printing process, precise control over material deposition, and simpler procedures. These features provide a foundation for further enhancing solar cell performance and expanding their applications. This review outlines the superiority of AM compared with traditional solar cell manufacturing methods and highlights how AM has addressed specific challenges currently faced by solar cells. The most widely researched solar cell structures in recent years were briefly reviewed with summarizing their advantages and disadvantages. Then, a comprehensive overview of different manufacturing processes, including traditional printing methods and AM, is presented. Especially, their workflows, characteristics, and impressive innovative applications in solar cell manufacturing were discussed in detail. Finally, based on the current state of research, the review reflects on the future prospects of applying AM technology in space solar energy production, such as integrated printing with protective outer layers together with the solar cells, customized functional structure printing, flexible large-scale printing, and printing of high-performance novel materials with nanoscale and microscale structures.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"7 7","pages":""},"PeriodicalIF":22.3000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.70017","citationCount":"0","resultStr":"{\"title\":\"Recent advances in additive manufacturing for solar cell based on organic/inorganic hybrid materials\",\"authors\":\"Ziyue Ju, Ruichan Lv, Anees A. Ansari, Jun Lin\",\"doi\":\"10.1002/inf2.70017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The performance of optoelectronic materials has been booming developed. Yet, the traditional solar cell manufacturing techniques, such as spin coating and screen printing, have significant limitations that seem to hinder the further development of solar cell technology. Compared with traditional manufacturing processes, additive manufacturing (AM) boasts advantages such as flexibility in the printing process, precise control over material deposition, and simpler procedures. These features provide a foundation for further enhancing solar cell performance and expanding their applications. This review outlines the superiority of AM compared with traditional solar cell manufacturing methods and highlights how AM has addressed specific challenges currently faced by solar cells. The most widely researched solar cell structures in recent years were briefly reviewed with summarizing their advantages and disadvantages. Then, a comprehensive overview of different manufacturing processes, including traditional printing methods and AM, is presented. Especially, their workflows, characteristics, and impressive innovative applications in solar cell manufacturing were discussed in detail. Finally, based on the current state of research, the review reflects on the future prospects of applying AM technology in space solar energy production, such as integrated printing with protective outer layers together with the solar cells, customized functional structure printing, flexible large-scale printing, and printing of high-performance novel materials with nanoscale and microscale structures.</p><p>\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":48538,\"journal\":{\"name\":\"Infomat\",\"volume\":\"7 7\",\"pages\":\"\"},\"PeriodicalIF\":22.3000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.70017\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infomat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/inf2.70017\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.70017","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Recent advances in additive manufacturing for solar cell based on organic/inorganic hybrid materials
The performance of optoelectronic materials has been booming developed. Yet, the traditional solar cell manufacturing techniques, such as spin coating and screen printing, have significant limitations that seem to hinder the further development of solar cell technology. Compared with traditional manufacturing processes, additive manufacturing (AM) boasts advantages such as flexibility in the printing process, precise control over material deposition, and simpler procedures. These features provide a foundation for further enhancing solar cell performance and expanding their applications. This review outlines the superiority of AM compared with traditional solar cell manufacturing methods and highlights how AM has addressed specific challenges currently faced by solar cells. The most widely researched solar cell structures in recent years were briefly reviewed with summarizing their advantages and disadvantages. Then, a comprehensive overview of different manufacturing processes, including traditional printing methods and AM, is presented. Especially, their workflows, characteristics, and impressive innovative applications in solar cell manufacturing were discussed in detail. Finally, based on the current state of research, the review reflects on the future prospects of applying AM technology in space solar energy production, such as integrated printing with protective outer layers together with the solar cells, customized functional structure printing, flexible large-scale printing, and printing of high-performance novel materials with nanoscale and microscale structures.
期刊介绍:
InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.