渐近良好的CSS-T码及三正交码的一种新构造

Elena Berardini;Reza Dastbasteh;Josu Etxezarreta Martinez;Shreyas Jain;Olatz Sanz Larrarte
{"title":"渐近良好的CSS-T码及三正交码的一种新构造","authors":"Elena Berardini;Reza Dastbasteh;Josu Etxezarreta Martinez;Shreyas Jain;Olatz Sanz Larrarte","doi":"10.1109/JSAIT.2025.3582156","DOIUrl":null,"url":null,"abstract":"We propose a new systematic construction of CSS-T codes from any given CSS code using a map <inline-formula> <tex-math>$\\phi $ </tex-math></inline-formula>. When <inline-formula> <tex-math>$\\phi $ </tex-math></inline-formula> is the identity map I, we retrieve the construction of Hu et al. (2021) and use it to prove the existence of asymptotically good binary CSS-T codes, resolving a previously open problem in the literature, and of asymptotically good quantum LDPC CSS-T codes. We analyze the structure of the logical operators corresponding to certain non-Clifford gates supported by the quantum codes obtained from this construction <inline-formula> <tex-math>$(\\phi = I)$ </tex-math></inline-formula>, concluding that they always result in the logical identity. An immediate application of these codes in dealing with coherent noise is discussed. We then develop a new doubling transformation for obtaining triorthogonal codes, which generalizes the doubling construction presented in Jain and Albert (2024). Our approach permits using self-orthogonal codes, instead of only doubly-even codes, as building blocks for triorthogonal codes. This broadens the range of codes available for magic state distillation.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"6 ","pages":"189-198"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotically Good CSS-T Codes and a New Construction of Triorthogonal Codes\",\"authors\":\"Elena Berardini;Reza Dastbasteh;Josu Etxezarreta Martinez;Shreyas Jain;Olatz Sanz Larrarte\",\"doi\":\"10.1109/JSAIT.2025.3582156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new systematic construction of CSS-T codes from any given CSS code using a map <inline-formula> <tex-math>$\\\\phi $ </tex-math></inline-formula>. When <inline-formula> <tex-math>$\\\\phi $ </tex-math></inline-formula> is the identity map I, we retrieve the construction of Hu et al. (2021) and use it to prove the existence of asymptotically good binary CSS-T codes, resolving a previously open problem in the literature, and of asymptotically good quantum LDPC CSS-T codes. We analyze the structure of the logical operators corresponding to certain non-Clifford gates supported by the quantum codes obtained from this construction <inline-formula> <tex-math>$(\\\\phi = I)$ </tex-math></inline-formula>, concluding that they always result in the logical identity. An immediate application of these codes in dealing with coherent noise is discussed. We then develop a new doubling transformation for obtaining triorthogonal codes, which generalizes the doubling construction presented in Jain and Albert (2024). Our approach permits using self-orthogonal codes, instead of only doubly-even codes, as building blocks for triorthogonal codes. This broadens the range of codes available for magic state distillation.\",\"PeriodicalId\":73295,\"journal\":{\"name\":\"IEEE journal on selected areas in information theory\",\"volume\":\"6 \",\"pages\":\"189-198\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in information theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11047535/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11047535/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个新的CSS- t代码的系统结构,从任何给定的CSS代码使用映射$\phi $。当$\phi $是单位映射I时,我们检索Hu等人(2021)的构造,并使用它来证明渐近良好的二进制CSS-T码的存在,解决了文献中先前开放的问题,以及渐近良好的量子LDPC CSS-T码。我们分析了由该构造得到的量子码所支持的某些非clifford门对应的逻辑算子的结构,得出它们总是导致逻辑恒等。讨论了这些码在处理相干噪声中的直接应用。然后,我们开发了一种新的用于获得三正交码的加倍变换,它推广了Jain和Albert(2024)中提出的加倍构造。我们的方法允许使用自正交码,而不仅仅是双偶码,作为三正交码的构建块。这扩大了可用于魔法状态蒸馏的代码范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotically Good CSS-T Codes and a New Construction of Triorthogonal Codes
We propose a new systematic construction of CSS-T codes from any given CSS code using a map $\phi $ . When $\phi $ is the identity map I, we retrieve the construction of Hu et al. (2021) and use it to prove the existence of asymptotically good binary CSS-T codes, resolving a previously open problem in the literature, and of asymptotically good quantum LDPC CSS-T codes. We analyze the structure of the logical operators corresponding to certain non-Clifford gates supported by the quantum codes obtained from this construction $(\phi = I)$ , concluding that they always result in the logical identity. An immediate application of these codes in dealing with coherent noise is discussed. We then develop a new doubling transformation for obtaining triorthogonal codes, which generalizes the doubling construction presented in Jain and Albert (2024). Our approach permits using self-orthogonal codes, instead of only doubly-even codes, as building blocks for triorthogonal codes. This broadens the range of codes available for magic state distillation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信