DeInfoReg:一个具有信息正则化的解耦学习框架,用于更好的训练吞吐量

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zih-Hao Huang, You-Teng Lin, Hung-Hsuan Chen
{"title":"DeInfoReg:一个具有信息正则化的解耦学习框架,用于更好的训练吞吐量","authors":"Zih-Hao Huang,&nbsp;You-Teng Lin,&nbsp;Hung-Hsuan Chen","doi":"10.1016/j.neucom.2025.130813","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces Decoupled Supervised Learning with Information Regularization (DeInfoReg), a novel approach that transforms a long gradient flow into multiple shorter ones, thereby mitigating the vanishing gradient problem. Integrating a pipeline strategy, DeInfoReg enables model parallelization across multiple GPUs, significantly improving training throughput. We compare our proposed method with standard backpropagation and other gradient flow decomposition techniques. Extensive experiments on diverse tasks and datasets demonstrate that DeInfoReg achieves superior performance and better noise resistance than traditional BP models and efficiently utilizes parallel computing resources. The code for reproducibility is available at: <span><span>https://github.com/ianzih/Decoupled-Supervised-Learning-for-Information-Regularization/</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"651 ","pages":"Article 130813"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DeInfoReg: A decoupled learning framework with information regularization for better training throughput\",\"authors\":\"Zih-Hao Huang,&nbsp;You-Teng Lin,&nbsp;Hung-Hsuan Chen\",\"doi\":\"10.1016/j.neucom.2025.130813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces Decoupled Supervised Learning with Information Regularization (DeInfoReg), a novel approach that transforms a long gradient flow into multiple shorter ones, thereby mitigating the vanishing gradient problem. Integrating a pipeline strategy, DeInfoReg enables model parallelization across multiple GPUs, significantly improving training throughput. We compare our proposed method with standard backpropagation and other gradient flow decomposition techniques. Extensive experiments on diverse tasks and datasets demonstrate that DeInfoReg achieves superior performance and better noise resistance than traditional BP models and efficiently utilizes parallel computing resources. The code for reproducibility is available at: <span><span>https://github.com/ianzih/Decoupled-Supervised-Learning-for-Information-Regularization/</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"651 \",\"pages\":\"Article 130813\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225014857\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225014857","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于信息正则化的解耦监督学习(DeInfoReg)方法,该方法将长梯度流转化为多个短梯度流,从而缓解了梯度消失问题。通过集成流水线策略,DeInfoReg可以跨多个gpu实现模型并行化,显著提高训练吞吐量。我们将该方法与标准反向传播和其他梯度流分解技术进行了比较。在不同任务和数据集上的大量实验表明,DeInfoReg具有比传统BP模型更优越的性能和更强的抗噪声能力,并且有效地利用了并行计算资源。可复制性的代码可在:https://github.com/ianzih/Decoupled-Supervised-Learning-for-Information-Regularization/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DeInfoReg: A decoupled learning framework with information regularization for better training throughput
This paper introduces Decoupled Supervised Learning with Information Regularization (DeInfoReg), a novel approach that transforms a long gradient flow into multiple shorter ones, thereby mitigating the vanishing gradient problem. Integrating a pipeline strategy, DeInfoReg enables model parallelization across multiple GPUs, significantly improving training throughput. We compare our proposed method with standard backpropagation and other gradient flow decomposition techniques. Extensive experiments on diverse tasks and datasets demonstrate that DeInfoReg achieves superior performance and better noise resistance than traditional BP models and efficiently utilizes parallel computing resources. The code for reproducibility is available at: https://github.com/ianzih/Decoupled-Supervised-Learning-for-Information-Regularization/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信