ML-GAN:使用生成对抗网络的多级文本驱动的细粒度图像生成

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hong Zhao, He Wang, Yongjuan Yang
{"title":"ML-GAN:使用生成对抗网络的多级文本驱动的细粒度图像生成","authors":"Hong Zhao,&nbsp;He Wang,&nbsp;Yongjuan Yang","doi":"10.1016/j.neucom.2025.130851","DOIUrl":null,"url":null,"abstract":"<div><div>Text-to-image generation aims to convert input text into semantically accurate and visually realistic images. Existing methods typically generate a general outline of an image using sentence-level text and then refine it with word-level text. However, this approach of jumping directly from coarse-grained to fine-grained text features makes it challenging for the model to refine images accurately. To address this issue, we propose a Multi-level Text-driven Fine-grained Image Generation using Generative Adversarial Networks (ML-GAN). The model leverages different hierarchical levels of text information to construct and optimize generated images progressively. We design a Dual-level Text Parallel Fusion Module (DPFM) and a Triple-level Text Parallel Fusion Module (TPFM) to precisely adjust and optimize image details by utilizing text information at different levels. Additionally, to enhance semantic consistency between text and generated images, we introduce a Cross-modal Attention Fusion Module in the discriminator to improve its ability to recognize text-image matching, thereby guiding the generator to produce images that better match text content. Compared to baseline models, our proposed model achieves improvements of 19.10% and 12.99% in FID scores on the CUB and COCO datasets, respectively. This validates the effectiveness of the multi-level text-to-image transformation approach in enhancing the quality of generated images.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"651 ","pages":"Article 130851"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ML-GAN: Multi-level Text-driven Fine-grained Image Generation using Generative Adversarial Network\",\"authors\":\"Hong Zhao,&nbsp;He Wang,&nbsp;Yongjuan Yang\",\"doi\":\"10.1016/j.neucom.2025.130851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Text-to-image generation aims to convert input text into semantically accurate and visually realistic images. Existing methods typically generate a general outline of an image using sentence-level text and then refine it with word-level text. However, this approach of jumping directly from coarse-grained to fine-grained text features makes it challenging for the model to refine images accurately. To address this issue, we propose a Multi-level Text-driven Fine-grained Image Generation using Generative Adversarial Networks (ML-GAN). The model leverages different hierarchical levels of text information to construct and optimize generated images progressively. We design a Dual-level Text Parallel Fusion Module (DPFM) and a Triple-level Text Parallel Fusion Module (TPFM) to precisely adjust and optimize image details by utilizing text information at different levels. Additionally, to enhance semantic consistency between text and generated images, we introduce a Cross-modal Attention Fusion Module in the discriminator to improve its ability to recognize text-image matching, thereby guiding the generator to produce images that better match text content. Compared to baseline models, our proposed model achieves improvements of 19.10% and 12.99% in FID scores on the CUB and COCO datasets, respectively. This validates the effectiveness of the multi-level text-to-image transformation approach in enhancing the quality of generated images.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"651 \",\"pages\":\"Article 130851\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225015231\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225015231","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

文本到图像生成的目的是将输入的文本转换成语义准确、视觉逼真的图像。现有的方法通常使用句子级文本生成图像的大致轮廓,然后使用单词级文本对其进行改进。然而,这种直接从粗粒度跳到细粒度的文本特征的方法使模型难以准确地细化图像。为了解决这个问题,我们提出了一种使用生成式对抗网络(ML-GAN)的多层次文本驱动的细粒度图像生成。该模型利用不同层次的文本信息逐步构建和优化生成的图像。设计了双级文本并行融合模块(DPFM)和三级文本并行融合模块(TPFM),利用不同层次的文本信息对图像细节进行精确调整和优化。此外,为了增强文本和生成图像之间的语义一致性,我们在鉴别器中引入了跨模态注意力融合模块,以提高鉴别器识别文本-图像匹配的能力,从而引导生成器生成更符合文本内容的图像。与基线模型相比,我们提出的模型在CUB和COCO数据集上的FID分数分别提高了19.10%和12.99%。这验证了多级文本到图像转换方法在提高生成图像质量方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ML-GAN: Multi-level Text-driven Fine-grained Image Generation using Generative Adversarial Network
Text-to-image generation aims to convert input text into semantically accurate and visually realistic images. Existing methods typically generate a general outline of an image using sentence-level text and then refine it with word-level text. However, this approach of jumping directly from coarse-grained to fine-grained text features makes it challenging for the model to refine images accurately. To address this issue, we propose a Multi-level Text-driven Fine-grained Image Generation using Generative Adversarial Networks (ML-GAN). The model leverages different hierarchical levels of text information to construct and optimize generated images progressively. We design a Dual-level Text Parallel Fusion Module (DPFM) and a Triple-level Text Parallel Fusion Module (TPFM) to precisely adjust and optimize image details by utilizing text information at different levels. Additionally, to enhance semantic consistency between text and generated images, we introduce a Cross-modal Attention Fusion Module in the discriminator to improve its ability to recognize text-image matching, thereby guiding the generator to produce images that better match text content. Compared to baseline models, our proposed model achieves improvements of 19.10% and 12.99% in FID scores on the CUB and COCO datasets, respectively. This validates the effectiveness of the multi-level text-to-image transformation approach in enhancing the quality of generated images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信