Yeming Yang , Zhihao Liu , Ka-Chun Wong , Qiuzhen Lin , Jianping Luo , Jianqiang Li
{"title":"网络入侵检测的进化多任务鲁棒架构搜索","authors":"Yeming Yang , Zhihao Liu , Ka-Chun Wong , Qiuzhen Lin , Jianping Luo , Jianqiang Li","doi":"10.1016/j.eswa.2025.128899","DOIUrl":null,"url":null,"abstract":"<div><div>Network Intrusion Detection (NID) becomes a key technology for ensuring network security. Recent researchers have proposed various NID systems based on neural networks. However, these networks require expensive expert knowledge for manual design, which is tedious and time-consuming. Moreover, they easily suffer from adversarial attacks, which limits their application in safety-critical scenarios. To alleviate the above problems, this paper proposes an evolutionary multi-task robust architecture search method, called EMR-NID, which can automatically design robust architectures for NID systems. First, we design an architecture transfer update strategy that achieves information sharing and knowledge transfer between different tasks. Then, we develop an architecture performance correction strategy that enhances the efficiency of robust search and strengthens NID’s defense capability. Finally, our EMR-NID method is validated on three well-known NID datasets, i.e., NSL-KDD, UNSW-NB15, and Edge-IIoTset. The experimental results show that EMR-NID can outperform some state-of-the-art NID methods in terms of clean and robust accuracy under multiple scenarios.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"296 ","pages":"Article 128899"},"PeriodicalIF":7.5000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolutionary multi-task robust architecture search for network intrusion detection\",\"authors\":\"Yeming Yang , Zhihao Liu , Ka-Chun Wong , Qiuzhen Lin , Jianping Luo , Jianqiang Li\",\"doi\":\"10.1016/j.eswa.2025.128899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Network Intrusion Detection (NID) becomes a key technology for ensuring network security. Recent researchers have proposed various NID systems based on neural networks. However, these networks require expensive expert knowledge for manual design, which is tedious and time-consuming. Moreover, they easily suffer from adversarial attacks, which limits their application in safety-critical scenarios. To alleviate the above problems, this paper proposes an evolutionary multi-task robust architecture search method, called EMR-NID, which can automatically design robust architectures for NID systems. First, we design an architecture transfer update strategy that achieves information sharing and knowledge transfer between different tasks. Then, we develop an architecture performance correction strategy that enhances the efficiency of robust search and strengthens NID’s defense capability. Finally, our EMR-NID method is validated on three well-known NID datasets, i.e., NSL-KDD, UNSW-NB15, and Edge-IIoTset. The experimental results show that EMR-NID can outperform some state-of-the-art NID methods in terms of clean and robust accuracy under multiple scenarios.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"296 \",\"pages\":\"Article 128899\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957417425025163\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425025163","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Evolutionary multi-task robust architecture search for network intrusion detection
Network Intrusion Detection (NID) becomes a key technology for ensuring network security. Recent researchers have proposed various NID systems based on neural networks. However, these networks require expensive expert knowledge for manual design, which is tedious and time-consuming. Moreover, they easily suffer from adversarial attacks, which limits their application in safety-critical scenarios. To alleviate the above problems, this paper proposes an evolutionary multi-task robust architecture search method, called EMR-NID, which can automatically design robust architectures for NID systems. First, we design an architecture transfer update strategy that achieves information sharing and knowledge transfer between different tasks. Then, we develop an architecture performance correction strategy that enhances the efficiency of robust search and strengthens NID’s defense capability. Finally, our EMR-NID method is validated on three well-known NID datasets, i.e., NSL-KDD, UNSW-NB15, and Edge-IIoTset. The experimental results show that EMR-NID can outperform some state-of-the-art NID methods in terms of clean and robust accuracy under multiple scenarios.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.