Stefan Strohmeier, Mathias Becker, Ellen Scheer-Weller
{"title":"超越厌恶——人力资源管理中适当算法决策的原则","authors":"Stefan Strohmeier, Mathias Becker, Ellen Scheer-Weller","doi":"10.1016/j.eswa.2025.128954","DOIUrl":null,"url":null,"abstract":"<div><div>As algorithmic decision-making (ADM) becomes increasingly embedded in human resource management (HRM), concerns such as a lack of fairness and accountability raise urgent questions about its appropriateness. This study addresses the need for ADM evaluation by developing a coherent framework of principles grounded in the task-technology fit approach. It elaborates a balanced triad of nine indispensable ADM principles—methodical (veracity, accuracy, validity), managerial (relevancy, quality, efficiency), and ethical (fairness, accountability, transparency)—and validates them through a systematic literature review of 126 ADM artifacts in HRM. The analysis reveals a troubling lack of attention to ethical and managerial dimensions, while even methodical aspects are often neglected—with the notable exception of accuracy. Building on these findings, the study outlines a forward-looking agenda to operationalize, calibrate, implement, evaluate, and codify ADM principles, ultimately promoting responsible, appropriate ADM in HRM that reflects an evaluative stance beyond mere aversion.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"296 ","pages":"Article 128954"},"PeriodicalIF":7.5000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond aversion – principles of appropriate algorithmic decision-making in human resource management\",\"authors\":\"Stefan Strohmeier, Mathias Becker, Ellen Scheer-Weller\",\"doi\":\"10.1016/j.eswa.2025.128954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As algorithmic decision-making (ADM) becomes increasingly embedded in human resource management (HRM), concerns such as a lack of fairness and accountability raise urgent questions about its appropriateness. This study addresses the need for ADM evaluation by developing a coherent framework of principles grounded in the task-technology fit approach. It elaborates a balanced triad of nine indispensable ADM principles—methodical (veracity, accuracy, validity), managerial (relevancy, quality, efficiency), and ethical (fairness, accountability, transparency)—and validates them through a systematic literature review of 126 ADM artifacts in HRM. The analysis reveals a troubling lack of attention to ethical and managerial dimensions, while even methodical aspects are often neglected—with the notable exception of accuracy. Building on these findings, the study outlines a forward-looking agenda to operationalize, calibrate, implement, evaluate, and codify ADM principles, ultimately promoting responsible, appropriate ADM in HRM that reflects an evaluative stance beyond mere aversion.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"296 \",\"pages\":\"Article 128954\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957417425025710\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425025710","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Beyond aversion – principles of appropriate algorithmic decision-making in human resource management
As algorithmic decision-making (ADM) becomes increasingly embedded in human resource management (HRM), concerns such as a lack of fairness and accountability raise urgent questions about its appropriateness. This study addresses the need for ADM evaluation by developing a coherent framework of principles grounded in the task-technology fit approach. It elaborates a balanced triad of nine indispensable ADM principles—methodical (veracity, accuracy, validity), managerial (relevancy, quality, efficiency), and ethical (fairness, accountability, transparency)—and validates them through a systematic literature review of 126 ADM artifacts in HRM. The analysis reveals a troubling lack of attention to ethical and managerial dimensions, while even methodical aspects are often neglected—with the notable exception of accuracy. Building on these findings, the study outlines a forward-looking agenda to operationalize, calibrate, implement, evaluate, and codify ADM principles, ultimately promoting responsible, appropriate ADM in HRM that reflects an evaluative stance beyond mere aversion.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.