{"title":"相互作用能的显式极小值族","authors":"Ruiwen Shu","doi":"10.1016/j.na.2025.113900","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we consider the minimizers of the interaction energies with the power-law interaction potentials <span><math><mrow><mi>W</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mi>a</mi></mrow></msup></mrow><mrow><mi>a</mi></mrow></mfrac><mo>−</mo><mfrac><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mi>b</mi></mrow></msup></mrow><mrow><mi>b</mi></mrow></mfrac></mrow></math></span> in <span><math><mi>d</mi></math></span> dimensions. For odd <span><math><mi>d</mi></math></span> with <span><math><mrow><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>−</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span> and even <span><math><mi>d</mi></math></span> with <span><math><mrow><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>1</mn><mo>−</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span>, we give the explicit formula for the unique energy minimizer up to translation. For the odd dimensions, the key observation is that successive Laplacian of the Euler–Lagrange condition gives a local partial differential equation for the minimizer. For the even dimensions <span><math><mi>d</mi></math></span>, the minimizer is given as the projection and rescaling of the previously constructed minimizer in dimension <span><math><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></math></span> via a new lemma on dimension reduction.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"261 ","pages":"Article 113900"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A family of explicit minimizers for interaction energies\",\"authors\":\"Ruiwen Shu\",\"doi\":\"10.1016/j.na.2025.113900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we consider the minimizers of the interaction energies with the power-law interaction potentials <span><math><mrow><mi>W</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mi>a</mi></mrow></msup></mrow><mrow><mi>a</mi></mrow></mfrac><mo>−</mo><mfrac><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mi>b</mi></mrow></msup></mrow><mrow><mi>b</mi></mrow></mfrac></mrow></math></span> in <span><math><mi>d</mi></math></span> dimensions. For odd <span><math><mi>d</mi></math></span> with <span><math><mrow><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>−</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span> and even <span><math><mi>d</mi></math></span> with <span><math><mrow><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>1</mn><mo>−</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span>, we give the explicit formula for the unique energy minimizer up to translation. For the odd dimensions, the key observation is that successive Laplacian of the Euler–Lagrange condition gives a local partial differential equation for the minimizer. For the even dimensions <span><math><mi>d</mi></math></span>, the minimizer is given as the projection and rescaling of the previously constructed minimizer in dimension <span><math><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></math></span> via a new lemma on dimension reduction.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"261 \",\"pages\":\"Article 113900\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001543\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001543","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A family of explicit minimizers for interaction energies
In this paper we consider the minimizers of the interaction energies with the power-law interaction potentials in dimensions. For odd with and even with , we give the explicit formula for the unique energy minimizer up to translation. For the odd dimensions, the key observation is that successive Laplacian of the Euler–Lagrange condition gives a local partial differential equation for the minimizer. For the even dimensions , the minimizer is given as the projection and rescaling of the previously constructed minimizer in dimension via a new lemma on dimension reduction.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.