Haobiao Fan , Yanbing Chen , Yibo Chen , Zhixin Tie , Hao Sheng , Wei Ke
{"title":"基于小波的多层次信息补偿学习的可见红外人再识别","authors":"Haobiao Fan , Yanbing Chen , Yibo Chen , Zhixin Tie , Hao Sheng , Wei Ke","doi":"10.1016/j.dsp.2025.105471","DOIUrl":null,"url":null,"abstract":"<div><div>The main challenge in cross-modal person re-identification (VI-ReID) is extracting discriminative features from different modalities. Most existing methods focus on minimizing modal differences but overlook the shallow modality-invariant information lost as network depth increases. To address this, we propose the Wavelet-based Multi-level Information Compensation (WMIC) learning method. At multiple network stages, we design an Information Compensation Block (ICB) that applies wavelet decomposition to deep features, producing four wavelet subbands to preserve modality-invariant details and enlarge the receptive field. These subbands are used to compute an attention matrix with shallow features, which is then applied to enhance shallow features' local information. Additionally, we represent each person image with two sets of embeddings by introducing a Wavelet Enhancement Block (WEB) to generate an additional embedding. Finally, we use a dual-branch center-guided loss to make the two embeddings complementary, thereby reducing the disparity between infrared and visible images. Extensive experiments on the SYSU-MM01, RegDB, and LLCM datasets demonstrate that WMIC outperforms existing methods.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"168 ","pages":"Article 105471"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wavelet-based multi-level information compensation learning for visible-infrared person re-identification\",\"authors\":\"Haobiao Fan , Yanbing Chen , Yibo Chen , Zhixin Tie , Hao Sheng , Wei Ke\",\"doi\":\"10.1016/j.dsp.2025.105471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The main challenge in cross-modal person re-identification (VI-ReID) is extracting discriminative features from different modalities. Most existing methods focus on minimizing modal differences but overlook the shallow modality-invariant information lost as network depth increases. To address this, we propose the Wavelet-based Multi-level Information Compensation (WMIC) learning method. At multiple network stages, we design an Information Compensation Block (ICB) that applies wavelet decomposition to deep features, producing four wavelet subbands to preserve modality-invariant details and enlarge the receptive field. These subbands are used to compute an attention matrix with shallow features, which is then applied to enhance shallow features' local information. Additionally, we represent each person image with two sets of embeddings by introducing a Wavelet Enhancement Block (WEB) to generate an additional embedding. Finally, we use a dual-branch center-guided loss to make the two embeddings complementary, thereby reducing the disparity between infrared and visible images. Extensive experiments on the SYSU-MM01, RegDB, and LLCM datasets demonstrate that WMIC outperforms existing methods.</div></div>\",\"PeriodicalId\":51011,\"journal\":{\"name\":\"Digital Signal Processing\",\"volume\":\"168 \",\"pages\":\"Article 105471\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1051200425004932\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200425004932","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Wavelet-based multi-level information compensation learning for visible-infrared person re-identification
The main challenge in cross-modal person re-identification (VI-ReID) is extracting discriminative features from different modalities. Most existing methods focus on minimizing modal differences but overlook the shallow modality-invariant information lost as network depth increases. To address this, we propose the Wavelet-based Multi-level Information Compensation (WMIC) learning method. At multiple network stages, we design an Information Compensation Block (ICB) that applies wavelet decomposition to deep features, producing four wavelet subbands to preserve modality-invariant details and enlarge the receptive field. These subbands are used to compute an attention matrix with shallow features, which is then applied to enhance shallow features' local information. Additionally, we represent each person image with two sets of embeddings by introducing a Wavelet Enhancement Block (WEB) to generate an additional embedding. Finally, we use a dual-branch center-guided loss to make the two embeddings complementary, thereby reducing the disparity between infrared and visible images. Extensive experiments on the SYSU-MM01, RegDB, and LLCM datasets demonstrate that WMIC outperforms existing methods.
期刊介绍:
Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal.
The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as:
• big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,