一个轻量级和实时水下目标检测的新数据集、模型和基准

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Huilin Ge , Pan Sun , Yu Lu
{"title":"一个轻量级和实时水下目标检测的新数据集、模型和基准","authors":"Huilin Ge ,&nbsp;Pan Sun ,&nbsp;Yu Lu","doi":"10.1016/j.neucom.2025.130891","DOIUrl":null,"url":null,"abstract":"<div><div>Underwater object detection (UOD) is crucial for monitoring marine ecosystems, underwater robotics, environmental protection, and autonomous underwater vehicles (AUVs). Despite progress, many models struggle under real-world conditions due to poor visibility, dynamic lighting, and domain shifts. Traditional methods like Faster R-CNN are computationally expensive, while YOLO-based models suffer in challenging underwater scenarios. The scarcity of large-scale annotated datasets further limits model generalization. To address these challenges, we introduce UOD-SZTU-2025, a new dataset of 3,133 high-quality underwater images, sourced primarily from video platforms. The dataset is used in EFCWM (Enhanced Feature Correction and Weighting Module) to extract and refine a feature material library for detection targets. We present <strong>EFCWM-Mamba-YOLO</strong>, a novel lightweight and real-time underwater object detector that integrates enhanced feature correction with state-space modeling to improve detection accuracy and robustness in complex underwater environments. The EFCWM module incorporates domain adaptation for improved robustness. Additionally, a two-stage training strategy first trains on a source domain and fine-tunes with limited target domain samples to enhance generalization. Experiments show our approach surpasses existing lightweight UOD models in accuracy, real-time performance, and robustness. Our dataset, model, and benchmark establish a strong foundation for future UOD research.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"651 ","pages":"Article 130891"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new dataset, model, and benchmark for lightweight and real-time underwater object detection\",\"authors\":\"Huilin Ge ,&nbsp;Pan Sun ,&nbsp;Yu Lu\",\"doi\":\"10.1016/j.neucom.2025.130891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Underwater object detection (UOD) is crucial for monitoring marine ecosystems, underwater robotics, environmental protection, and autonomous underwater vehicles (AUVs). Despite progress, many models struggle under real-world conditions due to poor visibility, dynamic lighting, and domain shifts. Traditional methods like Faster R-CNN are computationally expensive, while YOLO-based models suffer in challenging underwater scenarios. The scarcity of large-scale annotated datasets further limits model generalization. To address these challenges, we introduce UOD-SZTU-2025, a new dataset of 3,133 high-quality underwater images, sourced primarily from video platforms. The dataset is used in EFCWM (Enhanced Feature Correction and Weighting Module) to extract and refine a feature material library for detection targets. We present <strong>EFCWM-Mamba-YOLO</strong>, a novel lightweight and real-time underwater object detector that integrates enhanced feature correction with state-space modeling to improve detection accuracy and robustness in complex underwater environments. The EFCWM module incorporates domain adaptation for improved robustness. Additionally, a two-stage training strategy first trains on a source domain and fine-tunes with limited target domain samples to enhance generalization. Experiments show our approach surpasses existing lightweight UOD models in accuracy, real-time performance, and robustness. Our dataset, model, and benchmark establish a strong foundation for future UOD research.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"651 \",\"pages\":\"Article 130891\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225015632\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225015632","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

水下目标检测(UOD)对于海洋生态系统监测、水下机器人、环境保护和自主水下航行器(auv)至关重要。尽管取得了进展,但由于可视性差、动态光照和域移动,许多模型在现实世界条件下挣扎。像Faster R-CNN这样的传统方法在计算上很昂贵,而基于yolo的模型在具有挑战性的水下场景中会受到影响。大规模带注释数据集的稀缺性进一步限制了模型的泛化。为了应对这些挑战,我们推出了UOD-SZTU-2025,这是一个主要来自视频平台的3133张高质量水下图像的新数据集。该数据集在EFCWM (Enhanced Feature Correction and Weighting Module)中用于提取和细化检测目标的特征素材库。我们提出了EFCWM-Mamba-YOLO,一种新型的轻量级实时水下目标探测器,集成了增强的特征校正和状态空间建模,以提高复杂水下环境中的检测精度和鲁棒性。EFCWM模块结合了域适应以提高鲁棒性。此外,两阶段训练策略首先在源域上进行训练,然后对有限的目标域样本进行微调以增强泛化。实验表明,我们的方法在准确性、实时性和鲁棒性方面优于现有的轻量级UOD模型。我们的数据集、模型和基准为未来的UOD研究奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new dataset, model, and benchmark for lightweight and real-time underwater object detection
Underwater object detection (UOD) is crucial for monitoring marine ecosystems, underwater robotics, environmental protection, and autonomous underwater vehicles (AUVs). Despite progress, many models struggle under real-world conditions due to poor visibility, dynamic lighting, and domain shifts. Traditional methods like Faster R-CNN are computationally expensive, while YOLO-based models suffer in challenging underwater scenarios. The scarcity of large-scale annotated datasets further limits model generalization. To address these challenges, we introduce UOD-SZTU-2025, a new dataset of 3,133 high-quality underwater images, sourced primarily from video platforms. The dataset is used in EFCWM (Enhanced Feature Correction and Weighting Module) to extract and refine a feature material library for detection targets. We present EFCWM-Mamba-YOLO, a novel lightweight and real-time underwater object detector that integrates enhanced feature correction with state-space modeling to improve detection accuracy and robustness in complex underwater environments. The EFCWM module incorporates domain adaptation for improved robustness. Additionally, a two-stage training strategy first trains on a source domain and fine-tunes with limited target domain samples to enhance generalization. Experiments show our approach surpasses existing lightweight UOD models in accuracy, real-time performance, and robustness. Our dataset, model, and benchmark establish a strong foundation for future UOD research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信