Tinghao Han , Zhongdi Liu , Lincai Peng , Weipeng Song , Huai Liu , Wenlong Jia , Rui Zhang
{"title":"溶剂诱导木糖在Zr-Beta沸石上一锅催化转化为高产γ-戊内酯","authors":"Tinghao Han , Zhongdi Liu , Lincai Peng , Weipeng Song , Huai Liu , Wenlong Jia , Rui Zhang","doi":"10.1016/j.apcata.2025.120449","DOIUrl":null,"url":null,"abstract":"<div><div>The efficient production of γ-valerolactone (GVL) with high yield directly from xylose is of particular interest but remains a great challenge due to the long reaction path. We herein developed a facile catalytic system to directly convert xylose to GVL with a record-high yield of 54.3 %, employing β-zeolite supported Zr-based catalyst in 1,4-dioxane/isopropanol co-solvent. Using Zr(NO<sub>3</sub>)<sub>4</sub>·5 H<sub>2</sub>O as the Zr sources resulting in well-retained β-zeolite structure, larger surface area and pore volume and better dispersion of Zr species, as well as balanced acidic sites where higher amount of Brønsted acid sites promoted the ring-opening of furfural alcohol for this cascade reaction. Notably, the introduction of 1,4-dioxane facilitated the <em>in situ</em> formation of furfural (i.e. yield-determining step) by diluting the competitive adsorption behavior between isopropanol and xylose, allowing more xylose molecules to access the active center, thus promoting the sequential production of GVL with unexpectedly high yield. The present work provides a efficient and straightforward preparation of GVL from xylose, paving the pathway towards higher atom economy.</div></div>","PeriodicalId":243,"journal":{"name":"Applied Catalysis A: General","volume":"705 ","pages":"Article 120449"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solvent-induced one-pot catalytic conversion of xylose to high yield γ-valerolactone over Zr-Beta zeolite\",\"authors\":\"Tinghao Han , Zhongdi Liu , Lincai Peng , Weipeng Song , Huai Liu , Wenlong Jia , Rui Zhang\",\"doi\":\"10.1016/j.apcata.2025.120449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The efficient production of γ-valerolactone (GVL) with high yield directly from xylose is of particular interest but remains a great challenge due to the long reaction path. We herein developed a facile catalytic system to directly convert xylose to GVL with a record-high yield of 54.3 %, employing β-zeolite supported Zr-based catalyst in 1,4-dioxane/isopropanol co-solvent. Using Zr(NO<sub>3</sub>)<sub>4</sub>·5 H<sub>2</sub>O as the Zr sources resulting in well-retained β-zeolite structure, larger surface area and pore volume and better dispersion of Zr species, as well as balanced acidic sites where higher amount of Brønsted acid sites promoted the ring-opening of furfural alcohol for this cascade reaction. Notably, the introduction of 1,4-dioxane facilitated the <em>in situ</em> formation of furfural (i.e. yield-determining step) by diluting the competitive adsorption behavior between isopropanol and xylose, allowing more xylose molecules to access the active center, thus promoting the sequential production of GVL with unexpectedly high yield. The present work provides a efficient and straightforward preparation of GVL from xylose, paving the pathway towards higher atom economy.</div></div>\",\"PeriodicalId\":243,\"journal\":{\"name\":\"Applied Catalysis A: General\",\"volume\":\"705 \",\"pages\":\"Article 120449\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis A: General\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926860X25003503\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis A: General","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926860X25003503","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Solvent-induced one-pot catalytic conversion of xylose to high yield γ-valerolactone over Zr-Beta zeolite
The efficient production of γ-valerolactone (GVL) with high yield directly from xylose is of particular interest but remains a great challenge due to the long reaction path. We herein developed a facile catalytic system to directly convert xylose to GVL with a record-high yield of 54.3 %, employing β-zeolite supported Zr-based catalyst in 1,4-dioxane/isopropanol co-solvent. Using Zr(NO3)4·5 H2O as the Zr sources resulting in well-retained β-zeolite structure, larger surface area and pore volume and better dispersion of Zr species, as well as balanced acidic sites where higher amount of Brønsted acid sites promoted the ring-opening of furfural alcohol for this cascade reaction. Notably, the introduction of 1,4-dioxane facilitated the in situ formation of furfural (i.e. yield-determining step) by diluting the competitive adsorption behavior between isopropanol and xylose, allowing more xylose molecules to access the active center, thus promoting the sequential production of GVL with unexpectedly high yield. The present work provides a efficient and straightforward preparation of GVL from xylose, paving the pathway towards higher atom economy.
期刊介绍:
Applied Catalysis A: General publishes original papers on all aspects of catalysis of basic and practical interest to chemical scientists in both industrial and academic fields, with an emphasis onnew understanding of catalysts and catalytic reactions, new catalytic materials, new techniques, and new processes, especially those that have potential practical implications.
Papers that report results of a thorough study or optimization of systems or processes that are well understood, widely studied, or minor variations of known ones are discouraged. Authors should include statements in a separate section "Justification for Publication" of how the manuscript fits the scope of the journal in the cover letter to the editors. Submissions without such justification will be rejected without review.