{"title":"通过算法重新考察了不稳定公式定理","authors":"M. Malliaris , S. Moran","doi":"10.1016/j.apal.2025.103633","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is about the surprising interaction of a foundational result from model theory, about stability of theories, with algorithmic stability in learning. First, in response to gaps in existing learning models, we introduce a new statistical learning model, called “Probably Eventually Correct” or PEC. We characterize Littlestone (stable) classes in terms of this model. As a corollary, Littlestone classes have frequent short definitions in a natural statistical sense. In order to obtain a characterization of Littlestone classes in terms of frequent definitions, we build an equivalence theorem highlighting what is common to many existing approximation algorithms, and to the new PEC. This is guided by an analogy to definability of types in model theory, but has its own character. Drawing on these theorems and on other recent work, we present a complete algorithmic analogue of Shelah's celebrated Unstable Formula Theorem, with algorithmic properties taking the place of the infinite.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 10","pages":"Article 103633"},"PeriodicalIF":0.6000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The unstable formula theorem revisited via algorithms\",\"authors\":\"M. Malliaris , S. Moran\",\"doi\":\"10.1016/j.apal.2025.103633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is about the surprising interaction of a foundational result from model theory, about stability of theories, with algorithmic stability in learning. First, in response to gaps in existing learning models, we introduce a new statistical learning model, called “Probably Eventually Correct” or PEC. We characterize Littlestone (stable) classes in terms of this model. As a corollary, Littlestone classes have frequent short definitions in a natural statistical sense. In order to obtain a characterization of Littlestone classes in terms of frequent definitions, we build an equivalence theorem highlighting what is common to many existing approximation algorithms, and to the new PEC. This is guided by an analogy to definability of types in model theory, but has its own character. Drawing on these theorems and on other recent work, we present a complete algorithmic analogue of Shelah's celebrated Unstable Formula Theorem, with algorithmic properties taking the place of the infinite.</div></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"176 10\",\"pages\":\"Article 103633\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016800722500082X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016800722500082X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
The unstable formula theorem revisited via algorithms
This paper is about the surprising interaction of a foundational result from model theory, about stability of theories, with algorithmic stability in learning. First, in response to gaps in existing learning models, we introduce a new statistical learning model, called “Probably Eventually Correct” or PEC. We characterize Littlestone (stable) classes in terms of this model. As a corollary, Littlestone classes have frequent short definitions in a natural statistical sense. In order to obtain a characterization of Littlestone classes in terms of frequent definitions, we build an equivalence theorem highlighting what is common to many existing approximation algorithms, and to the new PEC. This is guided by an analogy to definability of types in model theory, but has its own character. Drawing on these theorems and on other recent work, we present a complete algorithmic analogue of Shelah's celebrated Unstable Formula Theorem, with algorithmic properties taking the place of the infinite.
期刊介绍:
The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.