线对称刚体运动的几何学

IF 0.7 4区 数学 Q3 MATHEMATICS
D. Bayril , J.M. Selig
{"title":"线对称刚体运动的几何学","authors":"D. Bayril ,&nbsp;J.M. Selig","doi":"10.1016/j.difgeo.2025.102270","DOIUrl":null,"url":null,"abstract":"<div><div>In this work the kinematic geometry of line-symmetric rigid-body motions is revisited. These motions are produced by reflecting a rigid body in the successive generator lines of a ruled surface. Classical results are re-derived using methods from Lie algebra and new results are found. In particular, results for some of the acceleration properties of these motions are found using the Sannia frame of the ruled surfaces. The ruled surfaces considered are given by the tangent, normal or binormal lines to smooth curves as well as Catalan surfaces and right conoids.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"100 ","pages":"Article 102270"},"PeriodicalIF":0.7000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The geometry of line-symmetric rigid-body motions\",\"authors\":\"D. Bayril ,&nbsp;J.M. Selig\",\"doi\":\"10.1016/j.difgeo.2025.102270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work the kinematic geometry of line-symmetric rigid-body motions is revisited. These motions are produced by reflecting a rigid body in the successive generator lines of a ruled surface. Classical results are re-derived using methods from Lie algebra and new results are found. In particular, results for some of the acceleration properties of these motions are found using the Sannia frame of the ruled surfaces. The ruled surfaces considered are given by the tangent, normal or binormal lines to smooth curves as well as Catalan surfaces and right conoids.</div></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"100 \",\"pages\":\"Article 102270\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224525000452\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000452","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,重新审视了线对称刚体运动的运动学几何。这些运动是由刚体在直纹曲面的连续产生线中反射而产生的。利用李代数的方法对经典结果进行了重新推导,得到了新的结果。特别地,利用直纹曲面的Sannia框架找到了这些运动的一些加速度特性的结果。所考虑的直纹曲面是由光滑曲线的切线、法线或二法线以及加泰罗尼亚曲面和右圆锥体给出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The geometry of line-symmetric rigid-body motions
In this work the kinematic geometry of line-symmetric rigid-body motions is revisited. These motions are produced by reflecting a rigid body in the successive generator lines of a ruled surface. Classical results are re-derived using methods from Lie algebra and new results are found. In particular, results for some of the acceleration properties of these motions are found using the Sannia frame of the ruled surfaces. The ruled surfaces considered are given by the tangent, normal or binormal lines to smooth curves as well as Catalan surfaces and right conoids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信