SAMamba:以太坊欺诈检测的结构感知Mamba

IF 8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Teng Huang;Jiahui Huang;Changyu Dong;Sisi Duan;Yan Pang
{"title":"SAMamba:以太坊欺诈检测的结构感知Mamba","authors":"Teng Huang;Jiahui Huang;Changyu Dong;Sisi Duan;Yan Pang","doi":"10.1109/TIFS.2025.3589015","DOIUrl":null,"url":null,"abstract":"The pseudonymity nature of Ethereum provides a protective umbrella for criminal activities, allowing criminals to develop a series of black industries such as phishing scams in unregulated areas. In order to exploit the relational inductive bias to discover the real identity of anonymous accounts, graph neural networks (GNNs) have been widely used in Ethereum fraud detection tasks as an effective and powerful framework. However, the expressive power of GNN’s 1-hop message passing mechanism is bounded by the Weisfeiler-Leman (1-WL) test, degrading the fraud detection performance on the Ethereum network. This paper proposes a structure-aware Mamba framework, named SAMamba. Specifically, SAMamba uses a subgraph encoding strategy to capture complex structural patterns and introduces Mamba’s exceptional sequence modeling capabilities to route global information. In order to filter task-relevant information from dense information, the attention mechanism and the selection mechanism are introduced from local and global perspectives, respectively. These tailor-made designs enable SAMamba to distinguish subtle differences in structural patterns and selectively aggregate task-oriented information, thereby demonstrating exceptional performance in fraud detection tasks. Extensive experiments on real-world Ethereum data demonstrate that SAMamba outperforms state-of-the-art methods. The codes are publicly available on Github: <uri>https://github.com/deepang-ai/SAMamba</uri>","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"7410-7423"},"PeriodicalIF":8.0000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAMamba: Structure-Aware Mamba for Ethereum Fraud Detection\",\"authors\":\"Teng Huang;Jiahui Huang;Changyu Dong;Sisi Duan;Yan Pang\",\"doi\":\"10.1109/TIFS.2025.3589015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pseudonymity nature of Ethereum provides a protective umbrella for criminal activities, allowing criminals to develop a series of black industries such as phishing scams in unregulated areas. In order to exploit the relational inductive bias to discover the real identity of anonymous accounts, graph neural networks (GNNs) have been widely used in Ethereum fraud detection tasks as an effective and powerful framework. However, the expressive power of GNN’s 1-hop message passing mechanism is bounded by the Weisfeiler-Leman (1-WL) test, degrading the fraud detection performance on the Ethereum network. This paper proposes a structure-aware Mamba framework, named SAMamba. Specifically, SAMamba uses a subgraph encoding strategy to capture complex structural patterns and introduces Mamba’s exceptional sequence modeling capabilities to route global information. In order to filter task-relevant information from dense information, the attention mechanism and the selection mechanism are introduced from local and global perspectives, respectively. These tailor-made designs enable SAMamba to distinguish subtle differences in structural patterns and selectively aggregate task-oriented information, thereby demonstrating exceptional performance in fraud detection tasks. Extensive experiments on real-world Ethereum data demonstrate that SAMamba outperforms state-of-the-art methods. The codes are publicly available on Github: <uri>https://github.com/deepang-ai/SAMamba</uri>\",\"PeriodicalId\":13492,\"journal\":{\"name\":\"IEEE Transactions on Information Forensics and Security\",\"volume\":\"20 \",\"pages\":\"7410-7423\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Forensics and Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11080015/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11080015/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

以太坊的假名性为犯罪活动提供了保护伞,允许犯罪分子在不受监管的地区发展网络钓鱼诈骗等一系列黑色产业。为了利用关系归纳偏差来发现匿名账户的真实身份,图神经网络(gnn)作为一种有效而强大的框架被广泛应用于以太坊欺诈检测任务中。然而,GNN的1跳消息传递机制的表达能力受到Weisfeiler-Leman (1-WL)测试的限制,降低了以太坊网络上的欺诈检测性能。本文提出了一个结构感知的Mamba框架,命名为SAMamba。具体来说,SAMamba使用子图编码策略来捕获复杂的结构模式,并引入Mamba的特殊序列建模功能来路由全局信息。为了从密集信息中过滤任务相关信息,分别从局部和全局角度引入了注意机制和选择机制。这些量身定制的设计使SAMamba能够区分结构模式中的细微差异,并有选择地聚合面向任务的信息,从而在欺诈检测任务中表现出卓越的性能。对真实以太坊数据的广泛实验表明,SAMamba优于最先进的方法。代码可以在Github上公开获得:https://github.com/deepang-ai/SAMamba
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SAMamba: Structure-Aware Mamba for Ethereum Fraud Detection
The pseudonymity nature of Ethereum provides a protective umbrella for criminal activities, allowing criminals to develop a series of black industries such as phishing scams in unregulated areas. In order to exploit the relational inductive bias to discover the real identity of anonymous accounts, graph neural networks (GNNs) have been widely used in Ethereum fraud detection tasks as an effective and powerful framework. However, the expressive power of GNN’s 1-hop message passing mechanism is bounded by the Weisfeiler-Leman (1-WL) test, degrading the fraud detection performance on the Ethereum network. This paper proposes a structure-aware Mamba framework, named SAMamba. Specifically, SAMamba uses a subgraph encoding strategy to capture complex structural patterns and introduces Mamba’s exceptional sequence modeling capabilities to route global information. In order to filter task-relevant information from dense information, the attention mechanism and the selection mechanism are introduced from local and global perspectives, respectively. These tailor-made designs enable SAMamba to distinguish subtle differences in structural patterns and selectively aggregate task-oriented information, thereby demonstrating exceptional performance in fraud detection tasks. Extensive experiments on real-world Ethereum data demonstrate that SAMamba outperforms state-of-the-art methods. The codes are publicly available on Github: https://github.com/deepang-ai/SAMamba
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信