拟线性次扩散方程的卷积正交

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Maria López-Fernández, Łukasz Płociniczak
{"title":"拟线性次扩散方程的卷积正交","authors":"Maria López-Fernández, Łukasz Płociniczak","doi":"10.1137/23m161450x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1482-1511, August 2025. <br/> Abstract. We construct a convolution quadrature (CQ) scheme for the quasilinear subdiffusion equation of order [math] and supply it with the fast and oblivious implementation. In particular, we find a condition for the CQ to be admissible and discretize the spatial part of the equation with the finite element method. We prove the unconditional stability and convergence of the scheme and find a bound on the error. Our estimates are globally optimal for all [math] and pointwise for [math] in the sense that they reduce to the well-known results for the linear equation. For the semilinear case, our estimates are optimal both globally and locally. As a passing result, we also obtain a discrete Grönwall inequality for the CQ, which is a crucial ingredient in our convergence proof based on the energy method. The paper concludes with numerical examples verifying convergence and computation time reduction when using fast and oblivious quadrature.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"9 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convolution Quadrature for the Quasilinear Subdiffusion Equation\",\"authors\":\"Maria López-Fernández, Łukasz Płociniczak\",\"doi\":\"10.1137/23m161450x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1482-1511, August 2025. <br/> Abstract. We construct a convolution quadrature (CQ) scheme for the quasilinear subdiffusion equation of order [math] and supply it with the fast and oblivious implementation. In particular, we find a condition for the CQ to be admissible and discretize the spatial part of the equation with the finite element method. We prove the unconditional stability and convergence of the scheme and find a bound on the error. Our estimates are globally optimal for all [math] and pointwise for [math] in the sense that they reduce to the well-known results for the linear equation. For the semilinear case, our estimates are optimal both globally and locally. As a passing result, we also obtain a discrete Grönwall inequality for the CQ, which is a crucial ingredient in our convergence proof based on the energy method. The paper concludes with numerical examples verifying convergence and computation time reduction when using fast and oblivious quadrature.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m161450x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m161450x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM Journal on Numerical Analysis, vol . 63, Issue 4, Page 1482-1511, August 2025。摘要。本文构造了一类准线性次扩散方程的卷积正交(CQ)格式,并提供了快速且遗忘的实现。特别地,我们找到了CQ允许的一个条件,并用有限元方法将方程的空间部分离散化。证明了该方案的无条件稳定性和收敛性,并找到了误差的一个界。我们的估计对所有[数学]和[数学]来说都是全局最优的,在某种意义上,它们减少到众所周知的线性方程的结果。对于半线性的情况,我们的估计在全局和局部都是最优的。作为一个合格的结果,我们还得到了CQ的离散Grönwall不等式,这是我们基于能量法的收敛性证明的关键因素。最后用数值算例验证了快速无关正交的收敛性和减少了计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convolution Quadrature for the Quasilinear Subdiffusion Equation
SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1482-1511, August 2025.
Abstract. We construct a convolution quadrature (CQ) scheme for the quasilinear subdiffusion equation of order [math] and supply it with the fast and oblivious implementation. In particular, we find a condition for the CQ to be admissible and discretize the spatial part of the equation with the finite element method. We prove the unconditional stability and convergence of the scheme and find a bound on the error. Our estimates are globally optimal for all [math] and pointwise for [math] in the sense that they reduce to the well-known results for the linear equation. For the semilinear case, our estimates are optimal both globally and locally. As a passing result, we also obtain a discrete Grönwall inequality for the CQ, which is a crucial ingredient in our convergence proof based on the energy method. The paper concludes with numerical examples verifying convergence and computation time reduction when using fast and oblivious quadrature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信