Dillan Prasad, Aditya Khandeshi, Spencer Sartin, Rishi Jain, Nader Dahdaleh, Maciej Lesniak, Yuan Luo, Christopher Ahuja
{"title":"AI会成为我们的Co-PI吗?","authors":"Dillan Prasad, Aditya Khandeshi, Spencer Sartin, Rishi Jain, Nader Dahdaleh, Maciej Lesniak, Yuan Luo, Christopher Ahuja","doi":"10.1038/s41746-025-01859-w","DOIUrl":null,"url":null,"abstract":"<p>Rapid advances in large language models (LLMs) are transforming the role of students and principal investigators (PIs) in biomedical research. This perspective examines how LLMs can reshape the laboratory model as de facto “Co-PIs” for tasks ranging from literature triage to hypothesis generation. By clarifying both opportunities and risks, we propose a framework for efficient AI collaboration which aims to guide investigators and trainees in harnessing LLMs responsibly.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"51 1","pages":""},"PeriodicalIF":15.1000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Will AI become our Co-PI?\",\"authors\":\"Dillan Prasad, Aditya Khandeshi, Spencer Sartin, Rishi Jain, Nader Dahdaleh, Maciej Lesniak, Yuan Luo, Christopher Ahuja\",\"doi\":\"10.1038/s41746-025-01859-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rapid advances in large language models (LLMs) are transforming the role of students and principal investigators (PIs) in biomedical research. This perspective examines how LLMs can reshape the laboratory model as de facto “Co-PIs” for tasks ranging from literature triage to hypothesis generation. By clarifying both opportunities and risks, we propose a framework for efficient AI collaboration which aims to guide investigators and trainees in harnessing LLMs responsibly.</p>\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":15.1000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41746-025-01859-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01859-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Rapid advances in large language models (LLMs) are transforming the role of students and principal investigators (PIs) in biomedical research. This perspective examines how LLMs can reshape the laboratory model as de facto “Co-PIs” for tasks ranging from literature triage to hypothesis generation. By clarifying both opportunities and risks, we propose a framework for efficient AI collaboration which aims to guide investigators and trainees in harnessing LLMs responsibly.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.