基于人在环强化学习的强韧3D可打印弹性体设计。

Frank Leibfarth, Johann L Rapp, Dylan M Anstine, Filipp Gusev, Filipp Nikitin, Kelly H Yun, Meredith A Borden, Vittal Bhat, Olexandr Isayev
{"title":"基于人在环强化学习的强韧3D可打印弹性体设计。","authors":"Frank Leibfarth, Johann L Rapp, Dylan M Anstine, Filipp Gusev, Filipp Nikitin, Kelly H Yun, Meredith A Borden, Vittal Bhat, Olexandr Isayev","doi":"10.1002/anie.202513147","DOIUrl":null,"url":null,"abstract":"<p><p>The development of high-performance elastomers for additive manufacturing requires overcoming complex property trade-offs that challenge conventional material discovery pipelines. Here, a human-in-the-loop reinforcement learning (RL) approach is used to discover polyurethane elastomers that overcome pervasive stress-strain property tradeoffs. Starting with a diverse training set of 92 formulations, a coupled multi-component reward system was identified that guides RL agents toward materials with both high strength and extensibility. Through three rounds of iterative optimization combining RL predictions with human chemical intuition, we identified elastomers with more than double the average toughness compared to the initial training set. The final exploitation round, aided by solubility prescreening, predicted twelve materials exhibiting both high strength (>10 MPa) and high strain at break (>200%). Analysis of the high performing materials revealed structure-property insights, including the benefits of high molar mass urethane oligomers, a high density of urethane functional groups, and incorporation of rigid low molecular weight diols and unsymmetric diisocyanates. These findings demonstrate that machine-guided, human-augmented design is a powerful strategy for accelerating polymer discovery in applications where data is scarce and expensive to acquire, with broad applicability to multi-objective materials optimization.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202513147"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Tough 3D Printable Elastomers with Human-in-the-Loop Reinforcement Learning.\",\"authors\":\"Frank Leibfarth, Johann L Rapp, Dylan M Anstine, Filipp Gusev, Filipp Nikitin, Kelly H Yun, Meredith A Borden, Vittal Bhat, Olexandr Isayev\",\"doi\":\"10.1002/anie.202513147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of high-performance elastomers for additive manufacturing requires overcoming complex property trade-offs that challenge conventional material discovery pipelines. Here, a human-in-the-loop reinforcement learning (RL) approach is used to discover polyurethane elastomers that overcome pervasive stress-strain property tradeoffs. Starting with a diverse training set of 92 formulations, a coupled multi-component reward system was identified that guides RL agents toward materials with both high strength and extensibility. Through three rounds of iterative optimization combining RL predictions with human chemical intuition, we identified elastomers with more than double the average toughness compared to the initial training set. The final exploitation round, aided by solubility prescreening, predicted twelve materials exhibiting both high strength (>10 MPa) and high strain at break (>200%). Analysis of the high performing materials revealed structure-property insights, including the benefits of high molar mass urethane oligomers, a high density of urethane functional groups, and incorporation of rigid low molecular weight diols and unsymmetric diisocyanates. These findings demonstrate that machine-guided, human-augmented design is a powerful strategy for accelerating polymer discovery in applications where data is scarce and expensive to acquire, with broad applicability to multi-objective materials optimization.</p>\",\"PeriodicalId\":520556,\"journal\":{\"name\":\"Angewandte Chemie (International ed. in English)\",\"volume\":\" \",\"pages\":\"e202513147\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie (International ed. in English)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202513147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202513147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

开发用于增材制造的高性能弹性体需要克服复杂的性能权衡,这挑战了传统材料发现管道。在这里,人在环强化学习(RL)方法被用来发现聚氨酯弹性体,克服普遍的应力-应变性能权衡。从92种配方的多样化训练集开始,确定了一个耦合的多组件奖励系统,指导RL代理选择具有高强度和可扩展性的材料。通过将强化学习预测与人类化学直觉相结合的三轮迭代优化,我们识别出的弹性体的平均韧性比初始训练集提高了一倍以上。最后一轮开采,在溶解度预筛选的帮助下,预测了12种材料具有高强度(>0 MPa)和高断裂应变(>200%)。对高性能材料的分析揭示了结构-性能的见解,包括高摩尔质量聚氨酯低聚物,高密度的聚氨酯官能团,以及刚性低分子量二醇和不对称二异氰酸酯的掺入的好处。这些发现表明,在数据稀缺且获取成本高昂的应用中,机器引导、人为增强的设计是加速聚合物发现的有力策略,具有广泛的多目标材料优化适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of Tough 3D Printable Elastomers with Human-in-the-Loop Reinforcement Learning.

The development of high-performance elastomers for additive manufacturing requires overcoming complex property trade-offs that challenge conventional material discovery pipelines. Here, a human-in-the-loop reinforcement learning (RL) approach is used to discover polyurethane elastomers that overcome pervasive stress-strain property tradeoffs. Starting with a diverse training set of 92 formulations, a coupled multi-component reward system was identified that guides RL agents toward materials with both high strength and extensibility. Through three rounds of iterative optimization combining RL predictions with human chemical intuition, we identified elastomers with more than double the average toughness compared to the initial training set. The final exploitation round, aided by solubility prescreening, predicted twelve materials exhibiting both high strength (>10 MPa) and high strain at break (>200%). Analysis of the high performing materials revealed structure-property insights, including the benefits of high molar mass urethane oligomers, a high density of urethane functional groups, and incorporation of rigid low molecular weight diols and unsymmetric diisocyanates. These findings demonstrate that machine-guided, human-augmented design is a powerful strategy for accelerating polymer discovery in applications where data is scarce and expensive to acquire, with broad applicability to multi-objective materials optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信