耳蜗中的毛细胞必须将共振模式调整到不稳定的边缘而不破坏集体模式。

PRX life Pub Date : 2025-01-01 Epub Date: 2025-01-02 DOI:10.1103/prxlife.3.013001
Asheesh S Momi, Michael C Abbott, Julian Rubinfien, Benjamin B Machta, Isabella R Graf
{"title":"耳蜗中的毛细胞必须将共振模式调整到不稳定的边缘而不破坏集体模式。","authors":"Asheesh S Momi, Michael C Abbott, Julian Rubinfien, Benjamin B Machta, Isabella R Graf","doi":"10.1103/prxlife.3.013001","DOIUrl":null,"url":null,"abstract":"<p><p>Sound produces surface waves along the cochlea's basilar membrane. To achieve the ear's astonishing frequency resolution and sensitivity to faint sounds, dissipation in the cochlea must be canceled via active processes in hair cells, effectively bringing the cochlea to the edge of instability. But how can the cochlea be globally tuned to the edge of instability with only local feedback? To address this question, we use a discretized version of a standard model of basilar membrane dynamics but with an explicit contribution from active processes in hair cells. Surprisingly, we find the basilar membrane supports two qualitatively distinct sets of modes: a continuum of <i>localized</i> modes and a small number of collective <i>extended</i> modes. Localized modes sharply peak at their resonant position and are largely uncoupled. As a result, they can be amplified almost independently from each other by local hair cells via feedback reminiscent of self-organized criticality. However, this amplification can destabilize the collective extended modes; avoiding such instabilities places limits on possible molecular mechanisms for active feedback in hair cells. Our work illuminates how and under what conditions individual hair cells can collectively create a critical cochlea.</p>","PeriodicalId":520261,"journal":{"name":"PRX life","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252909/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hair Cells in the Cochlea Must Tune Resonant Modes to the Edge of Instability without Destabilizing Collective Modes.\",\"authors\":\"Asheesh S Momi, Michael C Abbott, Julian Rubinfien, Benjamin B Machta, Isabella R Graf\",\"doi\":\"10.1103/prxlife.3.013001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sound produces surface waves along the cochlea's basilar membrane. To achieve the ear's astonishing frequency resolution and sensitivity to faint sounds, dissipation in the cochlea must be canceled via active processes in hair cells, effectively bringing the cochlea to the edge of instability. But how can the cochlea be globally tuned to the edge of instability with only local feedback? To address this question, we use a discretized version of a standard model of basilar membrane dynamics but with an explicit contribution from active processes in hair cells. Surprisingly, we find the basilar membrane supports two qualitatively distinct sets of modes: a continuum of <i>localized</i> modes and a small number of collective <i>extended</i> modes. Localized modes sharply peak at their resonant position and are largely uncoupled. As a result, they can be amplified almost independently from each other by local hair cells via feedback reminiscent of self-organized criticality. However, this amplification can destabilize the collective extended modes; avoiding such instabilities places limits on possible molecular mechanisms for active feedback in hair cells. Our work illuminates how and under what conditions individual hair cells can collectively create a critical cochlea.</p>\",\"PeriodicalId\":520261,\"journal\":{\"name\":\"PRX life\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252909/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX life\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxlife.3.013001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxlife.3.013001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

声音沿耳蜗基底膜产生表面波。为了实现耳朵惊人的频率分辨率和对微弱声音的敏感性,耳蜗中的耗散必须通过毛细胞的活跃过程来消除,从而有效地将耳蜗带到不稳定的边缘。但是,耳蜗是如何在只有局部反馈的情况下全局调整到不稳定的边缘的呢?为了解决这个问题,我们使用了基底膜动力学标准模型的离散版本,但毛细胞中的活性过程有明确的贡献。令人惊讶的是,我们发现基底膜支持两种性质不同的模态:连续的局部模态和少量的集体扩展模态。局域模式在其共振位置急剧达到峰值,并且在很大程度上是不耦合的。因此,它们可以通过反馈被局部毛细胞放大,使人联想到自组织临界。然而,这种放大会破坏集体扩展模态的稳定性;避免这种不稳定性限制了毛细胞主动反馈的可能分子机制。我们的工作阐明了单个毛细胞如何以及在什么条件下共同形成一个关键的耳蜗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hair Cells in the Cochlea Must Tune Resonant Modes to the Edge of Instability without Destabilizing Collective Modes.

Sound produces surface waves along the cochlea's basilar membrane. To achieve the ear's astonishing frequency resolution and sensitivity to faint sounds, dissipation in the cochlea must be canceled via active processes in hair cells, effectively bringing the cochlea to the edge of instability. But how can the cochlea be globally tuned to the edge of instability with only local feedback? To address this question, we use a discretized version of a standard model of basilar membrane dynamics but with an explicit contribution from active processes in hair cells. Surprisingly, we find the basilar membrane supports two qualitatively distinct sets of modes: a continuum of localized modes and a small number of collective extended modes. Localized modes sharply peak at their resonant position and are largely uncoupled. As a result, they can be amplified almost independently from each other by local hair cells via feedback reminiscent of self-organized criticality. However, this amplification can destabilize the collective extended modes; avoiding such instabilities places limits on possible molecular mechanisms for active feedback in hair cells. Our work illuminates how and under what conditions individual hair cells can collectively create a critical cochlea.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信