SOM2LM:自组织多模态纵向地图。

Jiahong Ouyang, Qingyu Zhao, Ehsan Adeli, Greg Zaharchuk, Kilian M Pohl
{"title":"SOM2LM:自组织多模态纵向地图。","authors":"Jiahong Ouyang, Qingyu Zhao, Ehsan Adeli, Greg Zaharchuk, Kilian M Pohl","doi":"10.1007/978-3-031-72069-7_38","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroimage modalities acquired by longitudinal studies often provide complementary information regarding disease progression. For example, amyloid PET visualizes the build-up of amyloid plaques that appear in earlier stages of Alzheimer's disease (AD), while structural MRIs depict brain atrophy appearing in the later stages of the disease. To accurately model multi-modal longitudinal data, we propose an interpretable self-supervised model called Self-Organized Multi-Modal Longitudinal Maps (SOM2LM). SOM2LM encodes each modality as a 2D self-organizing map (SOM) so that one dimension of each modality-specific SOMs corresponds to disease abnormality. The model also regularizes across modalities to depict their temporal order of capturing abnormality. When applied to longitudinal T1w MRIs and amyloid PET of the Alzheimer's Disease Neuroimaging Initiative (ADNI, <i>N</i>=741), SOM2LM generates interpretable latent spaces that characterize disease abnormality. When compared to state-of-art models, it achieves higher accuracy for the downstream tasks of cross-modality prediction of amyloid status from T1w-MRI and joint-modality prediction of individuals with mild cognitive impairment converting to AD using both MRI and amyloid PET. The code is available at https://github.com/ouyangjiahong/longitudinal-som-multi-modality.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15002 ","pages":"400-410"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12254005/pdf/","citationCount":"0","resultStr":"{\"title\":\"SOM2LM: Self-Organized Multi-Modal Longitudinal Maps.\",\"authors\":\"Jiahong Ouyang, Qingyu Zhao, Ehsan Adeli, Greg Zaharchuk, Kilian M Pohl\",\"doi\":\"10.1007/978-3-031-72069-7_38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuroimage modalities acquired by longitudinal studies often provide complementary information regarding disease progression. For example, amyloid PET visualizes the build-up of amyloid plaques that appear in earlier stages of Alzheimer's disease (AD), while structural MRIs depict brain atrophy appearing in the later stages of the disease. To accurately model multi-modal longitudinal data, we propose an interpretable self-supervised model called Self-Organized Multi-Modal Longitudinal Maps (SOM2LM). SOM2LM encodes each modality as a 2D self-organizing map (SOM) so that one dimension of each modality-specific SOMs corresponds to disease abnormality. The model also regularizes across modalities to depict their temporal order of capturing abnormality. When applied to longitudinal T1w MRIs and amyloid PET of the Alzheimer's Disease Neuroimaging Initiative (ADNI, <i>N</i>=741), SOM2LM generates interpretable latent spaces that characterize disease abnormality. When compared to state-of-art models, it achieves higher accuracy for the downstream tasks of cross-modality prediction of amyloid status from T1w-MRI and joint-modality prediction of individuals with mild cognitive impairment converting to AD using both MRI and amyloid PET. The code is available at https://github.com/ouyangjiahong/longitudinal-som-multi-modality.</p>\",\"PeriodicalId\":94280,\"journal\":{\"name\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"volume\":\"15002 \",\"pages\":\"400-410\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12254005/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-72069-7_38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-72069-7_38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过纵向研究获得的神经影像模式通常提供关于疾病进展的补充信息。例如,淀粉样蛋白PET可以显示阿尔茨海默病(AD)早期阶段出现的淀粉样斑块的形成,而结构核磁共振成像(mri)可以描绘疾病晚期出现的脑萎缩。为了准确地建模多模态纵向数据,我们提出了一个可解释的自监督模型,称为自组织多模态纵向地图(SOM2LM)。SOM2LM将每种模式编码为二维自组织图(SOM),以便每种模式特异性SOM的一个维度对应于疾病异常。该模型还对各个模态进行正则化,以描述捕获异常的时间顺序。当应用于阿尔茨海默病神经影像学倡议(ADNI, N=741)的纵向T1w mri和淀粉样PET时,SOM2LM产生可解释的潜伏空间,表征疾病异常。与最先进的模型相比,该模型在T1w-MRI的淀粉样蛋白状态的跨模态预测下游任务以及使用MRI和淀粉样蛋白PET联合模态预测轻度认知障碍转化为AD的个体方面具有更高的准确性。代码可在https://github.com/ouyangjiahong/longitudinal-som-multi-modality上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SOM2LM: Self-Organized Multi-Modal Longitudinal Maps.

Neuroimage modalities acquired by longitudinal studies often provide complementary information regarding disease progression. For example, amyloid PET visualizes the build-up of amyloid plaques that appear in earlier stages of Alzheimer's disease (AD), while structural MRIs depict brain atrophy appearing in the later stages of the disease. To accurately model multi-modal longitudinal data, we propose an interpretable self-supervised model called Self-Organized Multi-Modal Longitudinal Maps (SOM2LM). SOM2LM encodes each modality as a 2D self-organizing map (SOM) so that one dimension of each modality-specific SOMs corresponds to disease abnormality. The model also regularizes across modalities to depict their temporal order of capturing abnormality. When applied to longitudinal T1w MRIs and amyloid PET of the Alzheimer's Disease Neuroimaging Initiative (ADNI, N=741), SOM2LM generates interpretable latent spaces that characterize disease abnormality. When compared to state-of-art models, it achieves higher accuracy for the downstream tasks of cross-modality prediction of amyloid status from T1w-MRI and joint-modality prediction of individuals with mild cognitive impairment converting to AD using both MRI and amyloid PET. The code is available at https://github.com/ouyangjiahong/longitudinal-som-multi-modality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信