上皮细胞单层的细胞外电化学阻抗谱方法。

IF 1 Q3 BIOLOGY
Athena J Chien, Colby F Lewallen, Hanna Khor, Analia Vazquez Cegla, Rongming Guo, Adrienne L Watson, Chris Hatcher, Nael A McCarty, Kapil Bharti, Craig R Forest
{"title":"上皮细胞单层的细胞外电化学阻抗谱方法。","authors":"Athena J Chien, Colby F Lewallen, Hanna Khor, Analia Vazquez Cegla, Rongming Guo, Adrienne L Watson, Chris Hatcher, Nael A McCarty, Kapil Bharti, Craig R Forest","doi":"10.21769/BioProtoc.5341","DOIUrl":null,"url":null,"abstract":"<p><p>Epithelial tissues form barriers to the flow of ions, nutrients, waste products, bacteria, and viruses. The conventional electrophysiology measurement of transepithelial resistance (TEER/TER) can quantify epithelial barrier integrity, but does not capture all the electrical behavior of the tissue or provide insight into membrane-specific properties. Electrochemical impedance spectroscopy, in addition to measurement of TER, enables measurement of transepithelial capacitance (TEC) and a ratio of electrical time constants for the tissue, which we term the membrane ratio. This protocol describes how to perform galvanostatic electrochemical impedance spectroscopy on epithelia using commercially available cell culture inserts and chambers, detailing the apparatus, electrical signal, fitting technique, and error quantification. The measurement can be performed in under 1 min on commercially available cell culture inserts and electrophysiology chambers using instrumentation capable of galvanostatic sinusoidal signal processing (4 μA amplitude, 2 Hz to 50 kHz). All fits to the model have less than 10 Ω mean absolute error, revealing repeatable values distinct for each cell type. On representative retinal pigment (n = 3) and bronchiolar epithelial samples (n = 4), TER measurements were 500-667 Ω·cm<sup>2</sup> and 955-1,034 Ω·cm<sup>2</sup> (within the expected range), TEC measurements were 3.65-4.10 μF/cm<sup>2</sup> and 1.07-1.10 μF/cm<sup>2</sup>, and membrane ratio measurements were 18-22 and 1.9-2.2, respectively. Key features • This protocol requires preexisting experience with culturing epithelial cells (such as Caco-2, RPE, and 16HBE) for a successful outcome. • Builds upon methods by Lewallen et al. [1] and Linz et al. [2], integrating commercial chambers and providing a quantitative estimate of error. • Provides code to run measurement, process data, and report error; requires access to MATLAB software, but no coding experience is necessary. • Allows for repeated measurements on the same sample. Graphical overview <b>Electrochemical impedance spectroscopy measurement involves sending a galvanostatic signal through the electrophysiology chamber and across the epithelial cell monolayer (left) and results in complex impedance data at each frequency.</b> This data is then fit to an electrical circuit model to output transepithelial resistance (TER), transepithelial capacitance (TEC), and membrane ratio (α) (right).</p>","PeriodicalId":93907,"journal":{"name":"Bio-protocol","volume":"15 12","pages":"e5341"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12254589/pdf/","citationCount":"0","resultStr":"{\"title\":\"Method for Extracellular Electrochemical Impedance Spectroscopy on Epithelial Cell Monolayers.\",\"authors\":\"Athena J Chien, Colby F Lewallen, Hanna Khor, Analia Vazquez Cegla, Rongming Guo, Adrienne L Watson, Chris Hatcher, Nael A McCarty, Kapil Bharti, Craig R Forest\",\"doi\":\"10.21769/BioProtoc.5341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epithelial tissues form barriers to the flow of ions, nutrients, waste products, bacteria, and viruses. The conventional electrophysiology measurement of transepithelial resistance (TEER/TER) can quantify epithelial barrier integrity, but does not capture all the electrical behavior of the tissue or provide insight into membrane-specific properties. Electrochemical impedance spectroscopy, in addition to measurement of TER, enables measurement of transepithelial capacitance (TEC) and a ratio of electrical time constants for the tissue, which we term the membrane ratio. This protocol describes how to perform galvanostatic electrochemical impedance spectroscopy on epithelia using commercially available cell culture inserts and chambers, detailing the apparatus, electrical signal, fitting technique, and error quantification. The measurement can be performed in under 1 min on commercially available cell culture inserts and electrophysiology chambers using instrumentation capable of galvanostatic sinusoidal signal processing (4 μA amplitude, 2 Hz to 50 kHz). All fits to the model have less than 10 Ω mean absolute error, revealing repeatable values distinct for each cell type. On representative retinal pigment (n = 3) and bronchiolar epithelial samples (n = 4), TER measurements were 500-667 Ω·cm<sup>2</sup> and 955-1,034 Ω·cm<sup>2</sup> (within the expected range), TEC measurements were 3.65-4.10 μF/cm<sup>2</sup> and 1.07-1.10 μF/cm<sup>2</sup>, and membrane ratio measurements were 18-22 and 1.9-2.2, respectively. Key features • This protocol requires preexisting experience with culturing epithelial cells (such as Caco-2, RPE, and 16HBE) for a successful outcome. • Builds upon methods by Lewallen et al. [1] and Linz et al. [2], integrating commercial chambers and providing a quantitative estimate of error. • Provides code to run measurement, process data, and report error; requires access to MATLAB software, but no coding experience is necessary. • Allows for repeated measurements on the same sample. Graphical overview <b>Electrochemical impedance spectroscopy measurement involves sending a galvanostatic signal through the electrophysiology chamber and across the epithelial cell monolayer (left) and results in complex impedance data at each frequency.</b> This data is then fit to an electrical circuit model to output transepithelial resistance (TER), transepithelial capacitance (TEC), and membrane ratio (α) (right).</p>\",\"PeriodicalId\":93907,\"journal\":{\"name\":\"Bio-protocol\",\"volume\":\"15 12\",\"pages\":\"e5341\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12254589/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-protocol\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21769/BioProtoc.5341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-protocol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21769/BioProtoc.5341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

上皮组织对离子、营养物质、废物、细菌和病毒的流动形成屏障。传统的经上皮阻抗电生理学测量(TEER/TER)可以量化上皮屏障的完整性,但不能捕获组织的所有电行为或提供膜特异性特性的见解。电化学阻抗谱,除了测量TER之外,还可以测量上皮电容(TEC)和组织的电时间常数比,我们称之为膜比。本协议描述了如何使用市售的细胞培养插入和腔室对上皮细胞进行恒流电化学阻抗谱,详细介绍了仪器,电信号,装配技术和误差量化。测量可以在1分钟内完成在市售的细胞培养插入和电生理室使用仪器能够恒流正弦信号处理(4 μA振幅,2 Hz至50 kHz)。所有拟合模型的平均绝对误差小于10 Ω,揭示了每种细胞类型不同的可重复值。代表性视网膜色素(n = 3)和细支气管上皮(n = 4)的TER值分别为500 ~ 667 Ω·cm2和955 ~ 1034 Ω·cm2(在预期范围内),TEC值分别为3.65 ~ 4.10 μF/cm2和1.07 ~ 1.10 μF/cm2,膜比分别为18 ~ 22和1.9 ~ 2.2。•该方案需要预先存在的培养上皮细胞(如Caco-2, RPE和16HBE)的经验,以获得成功的结果。•以Lewallen et al.[1]和Linz et al.[1]的方法为基础,整合商会并提供误差的定量估计。提供代码来运行测量、处理数据和报告错误;需要使用MATLAB软件,但不需要编码经验。•允许在同一样品上重复测量。电化学阻抗谱测量包括通过电生理室和上皮细胞单层(左)发送恒流信号,并在每个频率上产生复杂的阻抗数据。然后将该数据拟合到电路模型中以输出经皮电阻(TER)、经皮电容(TEC)和膜比(α)(右)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Method for Extracellular Electrochemical Impedance Spectroscopy on Epithelial Cell Monolayers.

Epithelial tissues form barriers to the flow of ions, nutrients, waste products, bacteria, and viruses. The conventional electrophysiology measurement of transepithelial resistance (TEER/TER) can quantify epithelial barrier integrity, but does not capture all the electrical behavior of the tissue or provide insight into membrane-specific properties. Electrochemical impedance spectroscopy, in addition to measurement of TER, enables measurement of transepithelial capacitance (TEC) and a ratio of electrical time constants for the tissue, which we term the membrane ratio. This protocol describes how to perform galvanostatic electrochemical impedance spectroscopy on epithelia using commercially available cell culture inserts and chambers, detailing the apparatus, electrical signal, fitting technique, and error quantification. The measurement can be performed in under 1 min on commercially available cell culture inserts and electrophysiology chambers using instrumentation capable of galvanostatic sinusoidal signal processing (4 μA amplitude, 2 Hz to 50 kHz). All fits to the model have less than 10 Ω mean absolute error, revealing repeatable values distinct for each cell type. On representative retinal pigment (n = 3) and bronchiolar epithelial samples (n = 4), TER measurements were 500-667 Ω·cm2 and 955-1,034 Ω·cm2 (within the expected range), TEC measurements were 3.65-4.10 μF/cm2 and 1.07-1.10 μF/cm2, and membrane ratio measurements were 18-22 and 1.9-2.2, respectively. Key features • This protocol requires preexisting experience with culturing epithelial cells (such as Caco-2, RPE, and 16HBE) for a successful outcome. • Builds upon methods by Lewallen et al. [1] and Linz et al. [2], integrating commercial chambers and providing a quantitative estimate of error. • Provides code to run measurement, process data, and report error; requires access to MATLAB software, but no coding experience is necessary. • Allows for repeated measurements on the same sample. Graphical overview Electrochemical impedance spectroscopy measurement involves sending a galvanostatic signal through the electrophysiology chamber and across the epithelial cell monolayer (left) and results in complex impedance data at each frequency. This data is then fit to an electrical circuit model to output transepithelial resistance (TER), transepithelial capacitance (TEC), and membrane ratio (α) (right).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信