基于数学建模和数据分析方法的视网膜血管波形参数分析。

La matematica Pub Date : 2024-12-01 Epub Date: 2024-09-11 DOI:10.1007/s44007-024-00137-7
Lorenzo Sala, Kendall Lyons, Giovanna Guidoboni, Alon Harris, Marcela Szopos, Sergey Lapin
{"title":"基于数学建模和数据分析方法的视网膜血管波形参数分析。","authors":"Lorenzo Sala, Kendall Lyons, Giovanna Guidoboni, Alon Harris, Marcela Szopos, Sergey Lapin","doi":"10.1007/s44007-024-00137-7","DOIUrl":null,"url":null,"abstract":"<p><p>Patient-specific mathematical modeling combined with data analytics methods presents a promising approach for analyzing retinal hemodynamics. In this study, we build upon previous developments in retinal blood flow modeling, integrating clinical measurements and physiological insights to reconstruct parameters such as the central retinal artery velocity (CRA) Doppler profile and pressure wave. By leveraging personalized input data, including CRA velocity profile, systemic blood pressure, heart rate, and intraocular pressure, we evaluate the performance of our <i>in silico</i> approach. Our investigation highlights the significance of methodological considerations in combining automatic image processing and mathematical modeling, particularly concerning the selection of appropriate strategies and the inclusion of personalized supplementary data. Through extensive validation and comparison with prior works, we demonstrate the impact of different assessment methods on clinically meaningful quantities, particularly biomarkers related to blood flow. Furthermore, our study introduces a novel metric based on the Wasserstein distance for monitoring temporal changes in retinal blood flow dynamics, providing valuable insights into the evolution of vascular function. Overall, our findings underscore the importance of patient-specific input data, automatic image processing, and personalized mathematical modeling to ensure robust and clinically relevant outcomes in retinal vasculature analysis.</p>","PeriodicalId":74051,"journal":{"name":"La matematica","volume":"3 4","pages":"1297-1319"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12250142/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analysis of Waveform Parameters in the Retinal Vasculature <i>via</i> Mathematical Modeling and Data Analytics Methods.\",\"authors\":\"Lorenzo Sala, Kendall Lyons, Giovanna Guidoboni, Alon Harris, Marcela Szopos, Sergey Lapin\",\"doi\":\"10.1007/s44007-024-00137-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Patient-specific mathematical modeling combined with data analytics methods presents a promising approach for analyzing retinal hemodynamics. In this study, we build upon previous developments in retinal blood flow modeling, integrating clinical measurements and physiological insights to reconstruct parameters such as the central retinal artery velocity (CRA) Doppler profile and pressure wave. By leveraging personalized input data, including CRA velocity profile, systemic blood pressure, heart rate, and intraocular pressure, we evaluate the performance of our <i>in silico</i> approach. Our investigation highlights the significance of methodological considerations in combining automatic image processing and mathematical modeling, particularly concerning the selection of appropriate strategies and the inclusion of personalized supplementary data. Through extensive validation and comparison with prior works, we demonstrate the impact of different assessment methods on clinically meaningful quantities, particularly biomarkers related to blood flow. Furthermore, our study introduces a novel metric based on the Wasserstein distance for monitoring temporal changes in retinal blood flow dynamics, providing valuable insights into the evolution of vascular function. Overall, our findings underscore the importance of patient-specific input data, automatic image processing, and personalized mathematical modeling to ensure robust and clinically relevant outcomes in retinal vasculature analysis.</p>\",\"PeriodicalId\":74051,\"journal\":{\"name\":\"La matematica\",\"volume\":\"3 4\",\"pages\":\"1297-1319\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12250142/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"La matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44007-024-00137-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"La matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44007-024-00137-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

患者特异性数学建模结合数据分析方法提出了一种有前途的方法来分析视网膜血流动力学。在这项研究中,我们建立在视网膜血流模型的先前发展,整合临床测量和生理见解重建参数,如视网膜中央动脉速度(CRA)多普勒谱和压力波。通过利用个性化的输入数据,包括CRA速度曲线、全身血压、心率和眼压,我们评估了我们的计算机方法的性能。我们的研究强调了将自动图像处理和数学建模相结合的方法学考虑的重要性,特别是在选择适当的策略和包含个性化补充数据方面。通过广泛的验证和与先前工作的比较,我们证明了不同的评估方法对临床有意义的数量,特别是与血流相关的生物标志物的影响。此外,我们的研究引入了一种基于Wasserstein距离的新度量,用于监测视网膜血流动力学的时间变化,为血管功能的演变提供了有价值的见解。总的来说,我们的研究结果强调了患者特定输入数据,自动图像处理和个性化数学建模的重要性,以确保视网膜血管分析的鲁棒性和临床相关结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Waveform Parameters in the Retinal Vasculature via Mathematical Modeling and Data Analytics Methods.

Patient-specific mathematical modeling combined with data analytics methods presents a promising approach for analyzing retinal hemodynamics. In this study, we build upon previous developments in retinal blood flow modeling, integrating clinical measurements and physiological insights to reconstruct parameters such as the central retinal artery velocity (CRA) Doppler profile and pressure wave. By leveraging personalized input data, including CRA velocity profile, systemic blood pressure, heart rate, and intraocular pressure, we evaluate the performance of our in silico approach. Our investigation highlights the significance of methodological considerations in combining automatic image processing and mathematical modeling, particularly concerning the selection of appropriate strategies and the inclusion of personalized supplementary data. Through extensive validation and comparison with prior works, we demonstrate the impact of different assessment methods on clinically meaningful quantities, particularly biomarkers related to blood flow. Furthermore, our study introduces a novel metric based on the Wasserstein distance for monitoring temporal changes in retinal blood flow dynamics, providing valuable insights into the evolution of vascular function. Overall, our findings underscore the importance of patient-specific input data, automatic image processing, and personalized mathematical modeling to ensure robust and clinically relevant outcomes in retinal vasculature analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信