基于颈总动脉的机器学习预测颈内动脉系统风险。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yuhao Tong, Qingyi Zhang, Feng Zhang, Weidong Mu, Steven W Su, Lin Liu
{"title":"基于颈总动脉的机器学习预测颈内动脉系统风险。","authors":"Yuhao Tong, Qingyi Zhang, Feng Zhang, Weidong Mu, Steven W Su, Lin Liu","doi":"10.1007/s11517-025-03413-y","DOIUrl":null,"url":null,"abstract":"<p><p>Early identification of internal carotid artery (ICA) system diseases is critical for preventing stroke and other cerebrovascular events. Traditional diagnostic methods rely heavily on clinician expertise and costly imaging, limiting accessibility. This study aims to develop an interpretable machine learning (ML) model using common carotid artery (CCA) features to predict ICA disease risk, enabling efficient screening. Clinical data from 1612 patients (806 high-risk vs. 806 low-risk ICA disease) were analyzed. CCA features-blood flow, intima-media thickness, internal diameter, age, and gender-were used to train five ML models. Model performance was evaluated via accuracy, sensitivity, specificity, AUC-ROC, and F1 score. SHAP analysis identified key predictors. The support vector machine (SVM) achieved optimal performance (accuracy, 84.9%; AUC, 92.6%), outperforming neural networks (accuracy, 81.4%; AUC, 89.8%). SHAP analysis revealed CCA blood flow (negative correlation) and intima-media thickness (positive correlation) as dominant predictors. This study demonstrates that CCA hemodynamic and structural features, combined with interpretable ML models, can effectively predict ICA disease risk. The SVM-based framework offers a cost-effective screening tool for early intervention, particularly in resource-limited settings. Future work will validate these findings in multi-center cohorts.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting internal carotid artery system risk based on common carotid artery by machine learning.\",\"authors\":\"Yuhao Tong, Qingyi Zhang, Feng Zhang, Weidong Mu, Steven W Su, Lin Liu\",\"doi\":\"10.1007/s11517-025-03413-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Early identification of internal carotid artery (ICA) system diseases is critical for preventing stroke and other cerebrovascular events. Traditional diagnostic methods rely heavily on clinician expertise and costly imaging, limiting accessibility. This study aims to develop an interpretable machine learning (ML) model using common carotid artery (CCA) features to predict ICA disease risk, enabling efficient screening. Clinical data from 1612 patients (806 high-risk vs. 806 low-risk ICA disease) were analyzed. CCA features-blood flow, intima-media thickness, internal diameter, age, and gender-were used to train five ML models. Model performance was evaluated via accuracy, sensitivity, specificity, AUC-ROC, and F1 score. SHAP analysis identified key predictors. The support vector machine (SVM) achieved optimal performance (accuracy, 84.9%; AUC, 92.6%), outperforming neural networks (accuracy, 81.4%; AUC, 89.8%). SHAP analysis revealed CCA blood flow (negative correlation) and intima-media thickness (positive correlation) as dominant predictors. This study demonstrates that CCA hemodynamic and structural features, combined with interpretable ML models, can effectively predict ICA disease risk. The SVM-based framework offers a cost-effective screening tool for early intervention, particularly in resource-limited settings. Future work will validate these findings in multi-center cohorts.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-025-03413-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03413-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

颈内动脉(ICA)系统疾病的早期识别对于预防中风和其他脑血管事件至关重要。传统的诊断方法严重依赖临床医生的专业知识和昂贵的成像,限制了可及性。本研究旨在开发一种可解释的机器学习(ML)模型,利用颈总动脉(CCA)特征来预测颈总动脉疾病风险,从而实现有效的筛查。分析了1612例患者的临床资料(806例高危与806例低危ICA疾病)。CCA特征-血流、内膜-中膜厚度、内径、年龄和性别被用来训练5个ML模型。通过准确性、敏感性、特异性、AUC-ROC和F1评分来评估模型的性能。SHAP分析确定了关键的预测因子。支持向量机(SVM)获得了最优的性能(准确率为84.9%;AUC, 92.6%),优于神经网络(准确率,81.4%;AUC, 89.8%)。SHAP分析显示,CCA血流(负相关)和内膜-中膜厚度(正相关)是主要预测因素。本研究表明,CCA血流动力学和结构特征,结合可解释的ML模型,可以有效预测ICA疾病风险。基于支持向量机的框架为早期干预提供了一种具有成本效益的筛查工具,特别是在资源有限的情况下。未来的工作将在多中心队列中验证这些发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting internal carotid artery system risk based on common carotid artery by machine learning.

Early identification of internal carotid artery (ICA) system diseases is critical for preventing stroke and other cerebrovascular events. Traditional diagnostic methods rely heavily on clinician expertise and costly imaging, limiting accessibility. This study aims to develop an interpretable machine learning (ML) model using common carotid artery (CCA) features to predict ICA disease risk, enabling efficient screening. Clinical data from 1612 patients (806 high-risk vs. 806 low-risk ICA disease) were analyzed. CCA features-blood flow, intima-media thickness, internal diameter, age, and gender-were used to train five ML models. Model performance was evaluated via accuracy, sensitivity, specificity, AUC-ROC, and F1 score. SHAP analysis identified key predictors. The support vector machine (SVM) achieved optimal performance (accuracy, 84.9%; AUC, 92.6%), outperforming neural networks (accuracy, 81.4%; AUC, 89.8%). SHAP analysis revealed CCA blood flow (negative correlation) and intima-media thickness (positive correlation) as dominant predictors. This study demonstrates that CCA hemodynamic and structural features, combined with interpretable ML models, can effectively predict ICA disease risk. The SVM-based framework offers a cost-effective screening tool for early intervention, particularly in resource-limited settings. Future work will validate these findings in multi-center cohorts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信