竹节夹竹桃自交不亲和反应数量变异的遗传结构。

IF 5.1 3区 生物学 Q2 GENETICS & HEREDITY
Genetics Pub Date : 2025-09-03 DOI:10.1093/genetics/iyaf132
Grace A Burgin, Federico Roda, Matthew Farnitano, Charles Hale, Antonio Serrato-Capuchina, Robin Hopkins
{"title":"竹节夹竹桃自交不亲和反应数量变异的遗传结构。","authors":"Grace A Burgin, Federico Roda, Matthew Farnitano, Charles Hale, Antonio Serrato-Capuchina, Robin Hopkins","doi":"10.1093/genetics/iyaf132","DOIUrl":null,"url":null,"abstract":"<p><p>Flowering plants display extensive variation in selfing rate, a trait with significant ecological and evolutionary consequences. Many species use genetic mechanisms to recognize and reject self-pollen (termed self-incompatibility or SI), and the loss of SI is one of the most common evolutionary transitions among flowering plants. Despite the ubiquity of transitions to self-compatibility (SC), little is known about the genetic architecture through which SC evolves. Specifically, it is important to determine if SC has a simple or polygenic basis and if variation localizes to the self-pollen recognition locus (the \"S-locus\"). Phlox drummondii (Polemoniaceae) is a model system for exploring mating system evolution and expresses range-wide variation in SI. Here, we investigate the genetic architecture of SC variants segregating within this otherwise SI species. Using multiple independent crosses, we uncover numerous QTLs associated with intraspecific SI variation, consistent with a polygenic genetic architecture. While some QTLs overlap across mapping experiments, other QTLs are unique, suggesting that multiple genetic routes to SC exist. We demonstrate that P. drummondii has a sporophytic SI system, revealing an independent evolution of SI within the Phlox lineage. We map this novel S-locus and find that the genomic region containing the S-locus is associated with intraspecific variation in SI in one of the 3 mapping populations. Although further work is necessary to clarify the conditions under which quantitative variation in SI represents a transitional pathway to complete SC, our study reveals the genetic architecture upon which selection could act to drive this frequent and evolutionarily significant transition.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The genetic architecture of quantitative variation in the self-incompatibility response within Phlox drummondii (Polemoniaceae).\",\"authors\":\"Grace A Burgin, Federico Roda, Matthew Farnitano, Charles Hale, Antonio Serrato-Capuchina, Robin Hopkins\",\"doi\":\"10.1093/genetics/iyaf132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Flowering plants display extensive variation in selfing rate, a trait with significant ecological and evolutionary consequences. Many species use genetic mechanisms to recognize and reject self-pollen (termed self-incompatibility or SI), and the loss of SI is one of the most common evolutionary transitions among flowering plants. Despite the ubiquity of transitions to self-compatibility (SC), little is known about the genetic architecture through which SC evolves. Specifically, it is important to determine if SC has a simple or polygenic basis and if variation localizes to the self-pollen recognition locus (the \\\"S-locus\\\"). Phlox drummondii (Polemoniaceae) is a model system for exploring mating system evolution and expresses range-wide variation in SI. Here, we investigate the genetic architecture of SC variants segregating within this otherwise SI species. Using multiple independent crosses, we uncover numerous QTLs associated with intraspecific SI variation, consistent with a polygenic genetic architecture. While some QTLs overlap across mapping experiments, other QTLs are unique, suggesting that multiple genetic routes to SC exist. We demonstrate that P. drummondii has a sporophytic SI system, revealing an independent evolution of SI within the Phlox lineage. We map this novel S-locus and find that the genomic region containing the S-locus is associated with intraspecific variation in SI in one of the 3 mapping populations. Although further work is necessary to clarify the conditions under which quantitative variation in SI represents a transitional pathway to complete SC, our study reveals the genetic architecture upon which selection could act to drive this frequent and evolutionarily significant transition.</p>\",\"PeriodicalId\":48925,\"journal\":{\"name\":\"Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/genetics/iyaf132\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf132","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

开花植物在自交率上表现出广泛的变异,这一性状具有重要的生态和进化后果。许多物种利用遗传机制来识别和拒绝自交花粉(称为自交不亲和或SI),而SI的丧失是开花植物中最常见的进化转变之一。尽管向自相容性(SC)的转变无处不在,但人们对SC进化的遗传结构知之甚少。具体来说,重要的是确定SC是单一基因还是多基因基础,以及变异是否定位于自花粉识别位点(“s位点”)。凤尾夹竹桃(Phlox drummondii, Polemoniaceae)是探索交配系统进化的模式系统,表达了广泛的SI变异。在这里,我们研究了SC变异在这个SI物种中分离的遗传结构。利用多个独立杂交,我们发现了许多与种内SI变异相关的qtl,与多基因遗传结构一致。虽然一些qtl在定位实验中重叠,但其他qtl是独特的,这表明存在多种遗传途径。我们证明了drummondii具有孢子体SI系统,揭示了Phlox谱系中SI的独立进化。我们绘制了这个新的s位点,并发现包含s位点的基因组区域与三个绘制种群中的一个的SI种内变异有关。虽然需要进一步的工作来阐明SI的定量变异代表完成SC的过渡途径的条件,但我们的研究揭示了选择可以驱动这种频繁且进化上重要的过渡的遗传结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The genetic architecture of quantitative variation in the self-incompatibility response within Phlox drummondii (Polemoniaceae).

Flowering plants display extensive variation in selfing rate, a trait with significant ecological and evolutionary consequences. Many species use genetic mechanisms to recognize and reject self-pollen (termed self-incompatibility or SI), and the loss of SI is one of the most common evolutionary transitions among flowering plants. Despite the ubiquity of transitions to self-compatibility (SC), little is known about the genetic architecture through which SC evolves. Specifically, it is important to determine if SC has a simple or polygenic basis and if variation localizes to the self-pollen recognition locus (the "S-locus"). Phlox drummondii (Polemoniaceae) is a model system for exploring mating system evolution and expresses range-wide variation in SI. Here, we investigate the genetic architecture of SC variants segregating within this otherwise SI species. Using multiple independent crosses, we uncover numerous QTLs associated with intraspecific SI variation, consistent with a polygenic genetic architecture. While some QTLs overlap across mapping experiments, other QTLs are unique, suggesting that multiple genetic routes to SC exist. We demonstrate that P. drummondii has a sporophytic SI system, revealing an independent evolution of SI within the Phlox lineage. We map this novel S-locus and find that the genomic region containing the S-locus is associated with intraspecific variation in SI in one of the 3 mapping populations. Although further work is necessary to clarify the conditions under which quantitative variation in SI represents a transitional pathway to complete SC, our study reveals the genetic architecture upon which selection could act to drive this frequent and evolutionarily significant transition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genetics
Genetics GENETICS & HEREDITY-
CiteScore
6.90
自引率
6.10%
发文量
177
审稿时长
1.5 months
期刊介绍: GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work. While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal. The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists. GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信