基于web的治疗药物自动监测在精准医学肺结核管理中的应用。

IF 1.1 Q4 PHARMACOLOGY & PHARMACY
Translational and Clinical Pharmacology Pub Date : 2025-06-01 Epub Date: 2025-06-27 DOI:10.12793/tcp.2025.33.e9
Young-Kyung Choi, Rannissa Puspita Jayanti, Nguyen Thuy Ha Uyen, Yong-Soon Cho, Jae-Gook Shin
{"title":"基于web的治疗药物自动监测在精准医学肺结核管理中的应用。","authors":"Young-Kyung Choi, Rannissa Puspita Jayanti, Nguyen Thuy Ha Uyen, Yong-Soon Cho, Jae-Gook Shin","doi":"10.12793/tcp.2025.33.e9","DOIUrl":null,"url":null,"abstract":"<p><p>Tuberculosis (TB) remains one of the leading causes of infectious disease-related deaths worldwide. Model-informed precision dosing-based therapeutic drug monitoring (TDM) is a promising strategy to optimize anti-TB drugs doses based on pharmacokinetic (PK) profiles of patients. However, this approach requires significant time and trained personnel to interpret the results. To address this limitation, we developed and utilized an automated, web-based TDM platform that simplifies implementation and enhances accessibility, ultimately aiming to improve treatment outcomes. The system incorporates population PK models for both first- and second-line anti-TB drugs, integrating clinical data including demographics, <i>NAT2</i> genotype and drug concentrations from limited sampling strategies. Bayesian forecasting is used to estimate individual PK parameters and simulate optimized dosing regimens. Clinicians can use the platform to automatically generate the individual concentration-time curve plot that compares a patient's exposure with population level references, along with a table displaying the estimated individual PK parameters. If the dose adjustment is needed, users may input alternative regimens and run the simulation to predict the corresponding PK metrics. These features enable users to visualize predicted outcomes, compare exposures against therapeutic targets, and support optimal dose selection. The system produces downloadable reports containing patient specific data, PK parameter values, graphical PK profiles, and pharmacogenomic interpretations with minimal user input. This automated web-based platform enhances the time-efficiency and accessibility of TDM, making it a practical tool for personalized TB therapy. It is especially valuable in resource-limited settings where expert support is limited, by supporting clinical decision making and improving patient outcomes.</p>","PeriodicalId":23288,"journal":{"name":"Translational and Clinical Pharmacology","volume":"33 2","pages":"51-65"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12242390/pdf/","citationCount":"0","resultStr":"{\"title\":\"Web-based automated therapeutic drug monitoring application for precision medicine in tuberculosis management.\",\"authors\":\"Young-Kyung Choi, Rannissa Puspita Jayanti, Nguyen Thuy Ha Uyen, Yong-Soon Cho, Jae-Gook Shin\",\"doi\":\"10.12793/tcp.2025.33.e9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tuberculosis (TB) remains one of the leading causes of infectious disease-related deaths worldwide. Model-informed precision dosing-based therapeutic drug monitoring (TDM) is a promising strategy to optimize anti-TB drugs doses based on pharmacokinetic (PK) profiles of patients. However, this approach requires significant time and trained personnel to interpret the results. To address this limitation, we developed and utilized an automated, web-based TDM platform that simplifies implementation and enhances accessibility, ultimately aiming to improve treatment outcomes. The system incorporates population PK models for both first- and second-line anti-TB drugs, integrating clinical data including demographics, <i>NAT2</i> genotype and drug concentrations from limited sampling strategies. Bayesian forecasting is used to estimate individual PK parameters and simulate optimized dosing regimens. Clinicians can use the platform to automatically generate the individual concentration-time curve plot that compares a patient's exposure with population level references, along with a table displaying the estimated individual PK parameters. If the dose adjustment is needed, users may input alternative regimens and run the simulation to predict the corresponding PK metrics. These features enable users to visualize predicted outcomes, compare exposures against therapeutic targets, and support optimal dose selection. The system produces downloadable reports containing patient specific data, PK parameter values, graphical PK profiles, and pharmacogenomic interpretations with minimal user input. This automated web-based platform enhances the time-efficiency and accessibility of TDM, making it a practical tool for personalized TB therapy. It is especially valuable in resource-limited settings where expert support is limited, by supporting clinical decision making and improving patient outcomes.</p>\",\"PeriodicalId\":23288,\"journal\":{\"name\":\"Translational and Clinical Pharmacology\",\"volume\":\"33 2\",\"pages\":\"51-65\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12242390/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational and Clinical Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12793/tcp.2025.33.e9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational and Clinical Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12793/tcp.2025.33.e9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

结核病(TB)仍然是全世界传染病相关死亡的主要原因之一。基于模型的基于精确剂量的治疗药物监测(TDM)是一种很有前途的策略,可以根据患者的药代动力学(PK)概况来优化抗结核药物剂量。然而,这种方法需要大量的时间和训练有素的人员来解释结果。为了解决这一限制,我们开发并利用了一个自动化的基于网络的TDM平台,简化了实施过程,提高了可及性,最终旨在改善治疗结果。该系统整合了一线和二线抗结核药物的人群PK模型,整合了来自有限抽样策略的临床数据,包括人口统计数据、NAT2基因型和药物浓度。贝叶斯预测用于估计单个PK参数和模拟优化的给药方案。临床医生可以使用该平台自动生成个体浓度-时间曲线图,将患者的暴露与人群水平参考进行比较,并提供一个显示估计个体PK参数的表格。如果需要调整剂量,用户可以输入替代方案并运行模拟来预测相应的PK指标。这些功能使用户能够可视化预测结果,将暴露与治疗目标进行比较,并支持最佳剂量选择。该系统生成可下载的报告,其中包含患者特定数据、PK参数值、图形PK概况和药物基因组学解释,用户输入最少。这一基于网络的自动化平台提高了TDM的时间效率和可及性,使其成为个性化结核病治疗的实用工具。在资源有限、专家支持有限的环境中,通过支持临床决策和改善患者预后,它尤其有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Web-based automated therapeutic drug monitoring application for precision medicine in tuberculosis management.

Tuberculosis (TB) remains one of the leading causes of infectious disease-related deaths worldwide. Model-informed precision dosing-based therapeutic drug monitoring (TDM) is a promising strategy to optimize anti-TB drugs doses based on pharmacokinetic (PK) profiles of patients. However, this approach requires significant time and trained personnel to interpret the results. To address this limitation, we developed and utilized an automated, web-based TDM platform that simplifies implementation and enhances accessibility, ultimately aiming to improve treatment outcomes. The system incorporates population PK models for both first- and second-line anti-TB drugs, integrating clinical data including demographics, NAT2 genotype and drug concentrations from limited sampling strategies. Bayesian forecasting is used to estimate individual PK parameters and simulate optimized dosing regimens. Clinicians can use the platform to automatically generate the individual concentration-time curve plot that compares a patient's exposure with population level references, along with a table displaying the estimated individual PK parameters. If the dose adjustment is needed, users may input alternative regimens and run the simulation to predict the corresponding PK metrics. These features enable users to visualize predicted outcomes, compare exposures against therapeutic targets, and support optimal dose selection. The system produces downloadable reports containing patient specific data, PK parameter values, graphical PK profiles, and pharmacogenomic interpretations with minimal user input. This automated web-based platform enhances the time-efficiency and accessibility of TDM, making it a practical tool for personalized TB therapy. It is especially valuable in resource-limited settings where expert support is limited, by supporting clinical decision making and improving patient outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Translational and Clinical Pharmacology
Translational and Clinical Pharmacology Medicine-Pharmacology (medical)
CiteScore
1.60
自引率
11.10%
发文量
17
期刊介绍: Translational and Clinical Pharmacology (Transl Clin Pharmacol, TCP) is the official journal of the Korean Society for Clinical Pharmacology and Therapeutics (KSCPT). TCP is an interdisciplinary journal devoted to the dissemination of knowledge relating to all aspects of translational and clinical pharmacology. The categories for publication include pharmacokinetics (PK) and drug disposition, drug metabolism, pharmacodynamics (PD), clinical trials and design issues, pharmacogenomics and pharmacogenetics, pharmacometrics, pharmacoepidemiology, pharmacovigilence, and human pharmacology. Studies involving animal models, pharmacological characterization, and clinical trials are appropriate for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信