通过合理设计框架突变来调整抗体的稳定性和功能。

IF 7.3 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
mAbs Pub Date : 2025-12-01 Epub Date: 2025-07-13 DOI:10.1080/19420862.2025.2532117
Joseph C F Ng, Alicia Chenoweth, Maria Laura De Sciscio, Melanie Grandits, Anthony Cheung, Tooki Chu, Alexandra McCraw, Jitesh Chauhan, Yi Liu, Dongjun Guo, Semil Patel, Alice Kosmider, Daniela Iancu, Sophia N Karagiannis, Franca Fraternali
{"title":"通过合理设计框架突变来调整抗体的稳定性和功能。","authors":"Joseph C F Ng, Alicia Chenoweth, Maria Laura De Sciscio, Melanie Grandits, Anthony Cheung, Tooki Chu, Alexandra McCraw, Jitesh Chauhan, Yi Liu, Dongjun Guo, Semil Patel, Alice Kosmider, Daniela Iancu, Sophia N Karagiannis, Franca Fraternali","doi":"10.1080/19420862.2025.2532117","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence and machine learning models have been developed to engineer antibodies for specific recognition of antigens. These approaches, however, often focus on the antibody complementarity-determining region (CDR) whilst ignoring the immunoglobulin framework (FW), which provides structural rigidity and support for the flexible CDR loops. Here we present an integrated computational-experimental workflow, combining static structure analyses, molecular dynamics simulations and <i>in vitro</i> physicochemical and functional assays to generate rational designs of FW mutations for modulating antibody stability and activity. We first showed that recent antibody-specific language models lacked insights in FW mutagenesis, in comparison to approaches that use antibody structure information. Using the widely used breast cancer therapeutic trastuzumab as a use case, we designed stabilizing mutants which were distal to the CDR and preserved the antibody's functionality to engage its cognate antigen (HER2) and induce antibody-dependent cellular cytotoxicity. Interestingly, guided by local backbone motions predicted using molecular dynamics simulations, we designed a FW mutation on the trastuzumab light chain that retained antigen-binding effects, but lost Fab-mediated and Fc-mediated effector functions. This highlighted the effects of FW on immunological functions engendered in distal areas of the antibody, and the importance of considering attributes other than binding affinity when assessing antibody function. Our approach incorporates interdomain dynamics and distal effects between FW and the Fc domains, expands the scope of antibody engineering beyond the CDR, and underscores the importance of a holistic perspective that considers the entire antibody structure in optimizing antibody stability, developability and function.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"17 1","pages":"2532117"},"PeriodicalIF":7.3000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12269682/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tuning antibody stability and function by rational designs of framework mutations.\",\"authors\":\"Joseph C F Ng, Alicia Chenoweth, Maria Laura De Sciscio, Melanie Grandits, Anthony Cheung, Tooki Chu, Alexandra McCraw, Jitesh Chauhan, Yi Liu, Dongjun Guo, Semil Patel, Alice Kosmider, Daniela Iancu, Sophia N Karagiannis, Franca Fraternali\",\"doi\":\"10.1080/19420862.2025.2532117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial intelligence and machine learning models have been developed to engineer antibodies for specific recognition of antigens. These approaches, however, often focus on the antibody complementarity-determining region (CDR) whilst ignoring the immunoglobulin framework (FW), which provides structural rigidity and support for the flexible CDR loops. Here we present an integrated computational-experimental workflow, combining static structure analyses, molecular dynamics simulations and <i>in vitro</i> physicochemical and functional assays to generate rational designs of FW mutations for modulating antibody stability and activity. We first showed that recent antibody-specific language models lacked insights in FW mutagenesis, in comparison to approaches that use antibody structure information. Using the widely used breast cancer therapeutic trastuzumab as a use case, we designed stabilizing mutants which were distal to the CDR and preserved the antibody's functionality to engage its cognate antigen (HER2) and induce antibody-dependent cellular cytotoxicity. Interestingly, guided by local backbone motions predicted using molecular dynamics simulations, we designed a FW mutation on the trastuzumab light chain that retained antigen-binding effects, but lost Fab-mediated and Fc-mediated effector functions. This highlighted the effects of FW on immunological functions engendered in distal areas of the antibody, and the importance of considering attributes other than binding affinity when assessing antibody function. Our approach incorporates interdomain dynamics and distal effects between FW and the Fc domains, expands the scope of antibody engineering beyond the CDR, and underscores the importance of a holistic perspective that considers the entire antibody structure in optimizing antibody stability, developability and function.</p>\",\"PeriodicalId\":18206,\"journal\":{\"name\":\"mAbs\",\"volume\":\"17 1\",\"pages\":\"2532117\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12269682/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mAbs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19420862.2025.2532117\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mAbs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19420862.2025.2532117","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

人工智能和机器学习模型已经被开发出来,用于设计抗原特异性识别的抗体。然而,这些方法往往侧重于抗体互补决定区(CDR),而忽略了免疫球蛋白框架(FW),后者为灵活的CDR环提供结构刚性和支持。在这里,我们提出了一个集成的计算-实验工作流程,结合静态结构分析,分子动力学模拟和体外物理化学和功能分析,以产生合理的FW突变设计,以调节抗体的稳定性和活性。我们首先表明,与使用抗体结构信息的方法相比,最近的抗体特异性语言模型缺乏对FW突变的见解。以广泛使用的乳腺癌治疗药物曲妥珠单抗为例,我们设计了稳定突变体,这些突变体位于CDR的远端,并保留了抗体的功能,使其与同源抗原(HER2)结合,并诱导抗体依赖性细胞毒性。有趣的是,在分子动力学模拟预测的局部骨干运动的指导下,我们在曲妥珠单抗轻链上设计了FW突变,保留了抗原结合作用,但失去了fab介导和fc介导的效应功能。这突出了FW对抗体远端区域产生的免疫功能的影响,以及在评估抗体功能时考虑结合亲和力以外的属性的重要性。我们的方法结合了FW和Fc结构域之间的域间动力学和远端效应,将抗体工程的范围扩展到CDR之外,并强调了从整体角度考虑整个抗体结构在优化抗体稳定性、可开发性和功能方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tuning antibody stability and function by rational designs of framework mutations.

Artificial intelligence and machine learning models have been developed to engineer antibodies for specific recognition of antigens. These approaches, however, often focus on the antibody complementarity-determining region (CDR) whilst ignoring the immunoglobulin framework (FW), which provides structural rigidity and support for the flexible CDR loops. Here we present an integrated computational-experimental workflow, combining static structure analyses, molecular dynamics simulations and in vitro physicochemical and functional assays to generate rational designs of FW mutations for modulating antibody stability and activity. We first showed that recent antibody-specific language models lacked insights in FW mutagenesis, in comparison to approaches that use antibody structure information. Using the widely used breast cancer therapeutic trastuzumab as a use case, we designed stabilizing mutants which were distal to the CDR and preserved the antibody's functionality to engage its cognate antigen (HER2) and induce antibody-dependent cellular cytotoxicity. Interestingly, guided by local backbone motions predicted using molecular dynamics simulations, we designed a FW mutation on the trastuzumab light chain that retained antigen-binding effects, but lost Fab-mediated and Fc-mediated effector functions. This highlighted the effects of FW on immunological functions engendered in distal areas of the antibody, and the importance of considering attributes other than binding affinity when assessing antibody function. Our approach incorporates interdomain dynamics and distal effects between FW and the Fc domains, expands the scope of antibody engineering beyond the CDR, and underscores the importance of a holistic perspective that considers the entire antibody structure in optimizing antibody stability, developability and function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
mAbs
mAbs 工程技术-仪器仪表
CiteScore
10.70
自引率
11.30%
发文量
77
审稿时长
6-12 weeks
期刊介绍: mAbs is a multi-disciplinary journal dedicated to the art and science of antibody research and development. The journal has a strong scientific and medical focus, but also strives to serve a broader readership. The articles are thus of interest to scientists, clinical researchers, and physicians, as well as the wider mAb community, including our readers involved in technology transfer, legal issues, investment, strategic planning and the regulation of therapeutics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信