周围神经病变患者步态的数字生物力学评估。

IF 5.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Clara Tejada-Illa, Jordi Pegueroles, Mireia Claramunt-Molet, Ariadna Pi-Cervera, Ainhoa Heras-Delgado, Jesus Gascón-Fontal, Sebastian Idelsohn-Zielonka, Mari Rico, Nuria Vidal, Lorena Martín-Aguilar, Marta Caballero-Ávila, Cinta Lleixà, Roger Collet-Vidiella, Laura Llansó, Álvaro Carbayo, Ana Vesperinas, Luis Querol, Elba Pascual-Goñi
{"title":"周围神经病变患者步态的数字生物力学评估。","authors":"Clara Tejada-Illa, Jordi Pegueroles, Mireia Claramunt-Molet, Ariadna Pi-Cervera, Ainhoa Heras-Delgado, Jesus Gascón-Fontal, Sebastian Idelsohn-Zielonka, Mari Rico, Nuria Vidal, Lorena Martín-Aguilar, Marta Caballero-Ávila, Cinta Lleixà, Roger Collet-Vidiella, Laura Llansó, Álvaro Carbayo, Ana Vesperinas, Luis Querol, Elba Pascual-Goñi","doi":"10.1186/s12984-025-01694-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The clinical status and treatment response of patients with peripheral neuropathies (PNs) rely on subjective and inaccurate clinical scales. Wearable sensors have been evaluated successfully in other neurological conditions to study gait and balance. Our aim was to explore the ability of biomechanical analysis using wearable technology to monitor disease activity in PN.</p><p><strong>Methods: </strong>We conducted a single-center, longitudinal study to analyze gait parameters in PN patients and healthy controls using wearable biomechanical sensors. We used a novel technology that registers and integrates data from multiple wearable inertial sensors placed at different locations and plantar insoles. This system allows measuring kinematics, spatio-temporal parameters and plantar pressure. Patients wore the wearable system while performing the 2-min walking test (2MWT).</p><p><strong>Results: </strong>We included 37 chronic inflammatory demyelinating polyneuropathy (CIDP) patients, 3 chronic ataxic neuropathy, ophthalmoplegia, immunoglobulin M [IgM] paraprotein (CANOMAD) patients, 21 monoclonal gammopathy patients of undetermined significance associated with IgM (IgM-MGUS) patients, 7 patients with autoimmune nodopathies, 11 patients with hereditary neuropathies, and 50 healthy controls. First, we analyzed the sensor's ability to detect changes in ataxia and steppage gait severity and found significant differences in spatiotemporal and angular variables of the gait cycle. Second, we found correlations between biomechanical features and clinical scales and with the specific gait phenotype they associated with. Finally, we demonstrated that this technology is able to capture clinically significant changes in gait features over time.</p><p><strong>Conclusions: </strong>Our study provides proof-of-concept that wearable technology effectively detects and grades gait impairment, captures clinically relevant changes, and could enhance gait assessment in routine care and clinical research for patients with PN.</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":"22 1","pages":"159"},"PeriodicalIF":5.2000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257721/pdf/","citationCount":"0","resultStr":"{\"title\":\"Digital biomechanical assessment of gait in patients with peripheral neuropathies.\",\"authors\":\"Clara Tejada-Illa, Jordi Pegueroles, Mireia Claramunt-Molet, Ariadna Pi-Cervera, Ainhoa Heras-Delgado, Jesus Gascón-Fontal, Sebastian Idelsohn-Zielonka, Mari Rico, Nuria Vidal, Lorena Martín-Aguilar, Marta Caballero-Ávila, Cinta Lleixà, Roger Collet-Vidiella, Laura Llansó, Álvaro Carbayo, Ana Vesperinas, Luis Querol, Elba Pascual-Goñi\",\"doi\":\"10.1186/s12984-025-01694-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The clinical status and treatment response of patients with peripheral neuropathies (PNs) rely on subjective and inaccurate clinical scales. Wearable sensors have been evaluated successfully in other neurological conditions to study gait and balance. Our aim was to explore the ability of biomechanical analysis using wearable technology to monitor disease activity in PN.</p><p><strong>Methods: </strong>We conducted a single-center, longitudinal study to analyze gait parameters in PN patients and healthy controls using wearable biomechanical sensors. We used a novel technology that registers and integrates data from multiple wearable inertial sensors placed at different locations and plantar insoles. This system allows measuring kinematics, spatio-temporal parameters and plantar pressure. Patients wore the wearable system while performing the 2-min walking test (2MWT).</p><p><strong>Results: </strong>We included 37 chronic inflammatory demyelinating polyneuropathy (CIDP) patients, 3 chronic ataxic neuropathy, ophthalmoplegia, immunoglobulin M [IgM] paraprotein (CANOMAD) patients, 21 monoclonal gammopathy patients of undetermined significance associated with IgM (IgM-MGUS) patients, 7 patients with autoimmune nodopathies, 11 patients with hereditary neuropathies, and 50 healthy controls. First, we analyzed the sensor's ability to detect changes in ataxia and steppage gait severity and found significant differences in spatiotemporal and angular variables of the gait cycle. Second, we found correlations between biomechanical features and clinical scales and with the specific gait phenotype they associated with. Finally, we demonstrated that this technology is able to capture clinically significant changes in gait features over time.</p><p><strong>Conclusions: </strong>Our study provides proof-of-concept that wearable technology effectively detects and grades gait impairment, captures clinically relevant changes, and could enhance gait assessment in routine care and clinical research for patients with PN.</p>\",\"PeriodicalId\":16384,\"journal\":{\"name\":\"Journal of NeuroEngineering and Rehabilitation\",\"volume\":\"22 1\",\"pages\":\"159\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257721/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of NeuroEngineering and Rehabilitation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12984-025-01694-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroEngineering and Rehabilitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12984-025-01694-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:周围神经病变(PNs)患者的临床状态和治疗反应依赖于主观和不准确的临床量表。可穿戴传感器已经在其他神经系统疾病中成功地进行了评估,以研究步态和平衡。我们的目的是探索使用可穿戴技术进行生物力学分析以监测PN疾病活动的能力。方法:我们进行了一项单中心纵向研究,使用可穿戴生物力学传感器分析PN患者和健康对照者的步态参数。我们使用了一种新技术,该技术可以记录和集成来自放置在不同位置和足底鞋垫的多个可穿戴惯性传感器的数据。该系统可以测量运动学、时空参数和足底压力。患者在进行2分钟步行测试(2MWT)时佩戴可穿戴系统。结果:我们纳入了37例慢性炎症性脱髓鞘性多神经病变(CIDP)患者,3例慢性共济神经病变、眼麻痹、免疫球蛋白M [IgM]副蛋白(CANOMAD)患者,21例与IgM相关的意义不明的单克隆γ病(IgM- mgus)患者,7例自身免疫性结节病患者,11例遗传性神经病变患者和50例健康对照。首先,我们分析了传感器检测共济失调和步进步态严重程度变化的能力,发现步态周期的时空和角度变量存在显著差异。其次,我们发现生物力学特征与临床量表以及与之相关的特定步态表型之间存在相关性。最后,我们证明了这项技术能够捕捉临床步态特征随时间的显著变化。结论:我们的研究提供了概念验证,可穿戴技术可以有效地检测和分级步态障碍,捕捉临床相关变化,并可以增强PN患者的常规护理和临床研究中的步态评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Digital biomechanical assessment of gait in patients with peripheral neuropathies.

Background: The clinical status and treatment response of patients with peripheral neuropathies (PNs) rely on subjective and inaccurate clinical scales. Wearable sensors have been evaluated successfully in other neurological conditions to study gait and balance. Our aim was to explore the ability of biomechanical analysis using wearable technology to monitor disease activity in PN.

Methods: We conducted a single-center, longitudinal study to analyze gait parameters in PN patients and healthy controls using wearable biomechanical sensors. We used a novel technology that registers and integrates data from multiple wearable inertial sensors placed at different locations and plantar insoles. This system allows measuring kinematics, spatio-temporal parameters and plantar pressure. Patients wore the wearable system while performing the 2-min walking test (2MWT).

Results: We included 37 chronic inflammatory demyelinating polyneuropathy (CIDP) patients, 3 chronic ataxic neuropathy, ophthalmoplegia, immunoglobulin M [IgM] paraprotein (CANOMAD) patients, 21 monoclonal gammopathy patients of undetermined significance associated with IgM (IgM-MGUS) patients, 7 patients with autoimmune nodopathies, 11 patients with hereditary neuropathies, and 50 healthy controls. First, we analyzed the sensor's ability to detect changes in ataxia and steppage gait severity and found significant differences in spatiotemporal and angular variables of the gait cycle. Second, we found correlations between biomechanical features and clinical scales and with the specific gait phenotype they associated with. Finally, we demonstrated that this technology is able to capture clinically significant changes in gait features over time.

Conclusions: Our study provides proof-of-concept that wearable technology effectively detects and grades gait impairment, captures clinically relevant changes, and could enhance gait assessment in routine care and clinical research for patients with PN.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of NeuroEngineering and Rehabilitation
Journal of NeuroEngineering and Rehabilitation 工程技术-工程:生物医学
CiteScore
9.60
自引率
3.90%
发文量
122
审稿时长
24 months
期刊介绍: Journal of NeuroEngineering and Rehabilitation considers manuscripts on all aspects of research that result from cross-fertilization of the fields of neuroscience, biomedical engineering, and physical medicine & rehabilitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信