{"title":"循环外泌体在复发缓解多发性硬化症中具有独特的脂质特征。","authors":"Claudia Palazzo, Ilaria Asci, Silvia Russo, Cinzia Buccoliero, Vincenzo Mangialardi, Pasqua Abbrescia, Onofrio Valente, Maddalena Ruggieri, Damiano Paolicelli, Simona Lobasso, Antonio Frigeri","doi":"10.3389/fncel.2025.1613618","DOIUrl":null,"url":null,"abstract":"<p><p>Exosomes are small, membrane-bound vesicles secreted by most cell types into the extracellular environment. They play a crucial role in intercellular communication by transporting bioactive molecules, including proteins, lipids, and RNAs, thereby influencing the phenotype and potentially the genotype in recipient cells. In recent years, exosomes have gained increasing attention in the study of pathophysiological conditions and numerous diseases, including multiple sclerosis (MS), an autoimmune disorder with myelin sheath and neuroaxonal damage in the central nervous system. In this study, we isolated and purified serum-derived exosomes from patients with relapsing remitting MS (RR-MS) and characterized their lipid profiles using matrix-assisted laser desorption ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS). Lipid analysis was performed in both negative and positive ion modes on intact exosomes, bypassing lipid extraction steps and significantly reducing sample-processing time. The lipid profiles of RR-MS exosomes were compared to those of exosomes isolated from the serum of healthy subjects (HS), and statistical analysis was applied to mass spectra to identify potential lipid biomarkers. The specific phospholipid marker of exosomal membranes, bis(monoacylglycero)phosphate (BMP), was clearly detected in both MALDI lipid profiles, with no significant differences in its content between the two sample groups. However, RR-MS exosomes exhibited significantly lower levels of phosphatidic acid (PA) compared to HS exosomes, despite PA being a key structural component of extracellular vesicles. Notably, comparative analysis revealed an enrichment of several lysophosphatidylcholine (LPC) species in RR-MS exosome membranes, aligning with their known proinflammatory role in MS pathology. Our most significant finding was a markedly lower phosphatidylcholine (PC) to LPC ratio in the pathological group indicating potential alterations in membrane lipid homeostasis. To the best of our knowledge, this study is the first to report a distinct lipid signature in serum-derived exosomes from RR-MS patients using direct MALDI-TOF/MS analysis.</p>","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"19 ","pages":"1613618"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12245768/pdf/","citationCount":"0","resultStr":"{\"title\":\"Circulating exosomes with unique lipid signature in relapsing remitting multiple sclerosis.\",\"authors\":\"Claudia Palazzo, Ilaria Asci, Silvia Russo, Cinzia Buccoliero, Vincenzo Mangialardi, Pasqua Abbrescia, Onofrio Valente, Maddalena Ruggieri, Damiano Paolicelli, Simona Lobasso, Antonio Frigeri\",\"doi\":\"10.3389/fncel.2025.1613618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exosomes are small, membrane-bound vesicles secreted by most cell types into the extracellular environment. They play a crucial role in intercellular communication by transporting bioactive molecules, including proteins, lipids, and RNAs, thereby influencing the phenotype and potentially the genotype in recipient cells. In recent years, exosomes have gained increasing attention in the study of pathophysiological conditions and numerous diseases, including multiple sclerosis (MS), an autoimmune disorder with myelin sheath and neuroaxonal damage in the central nervous system. In this study, we isolated and purified serum-derived exosomes from patients with relapsing remitting MS (RR-MS) and characterized their lipid profiles using matrix-assisted laser desorption ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS). Lipid analysis was performed in both negative and positive ion modes on intact exosomes, bypassing lipid extraction steps and significantly reducing sample-processing time. The lipid profiles of RR-MS exosomes were compared to those of exosomes isolated from the serum of healthy subjects (HS), and statistical analysis was applied to mass spectra to identify potential lipid biomarkers. The specific phospholipid marker of exosomal membranes, bis(monoacylglycero)phosphate (BMP), was clearly detected in both MALDI lipid profiles, with no significant differences in its content between the two sample groups. However, RR-MS exosomes exhibited significantly lower levels of phosphatidic acid (PA) compared to HS exosomes, despite PA being a key structural component of extracellular vesicles. Notably, comparative analysis revealed an enrichment of several lysophosphatidylcholine (LPC) species in RR-MS exosome membranes, aligning with their known proinflammatory role in MS pathology. Our most significant finding was a markedly lower phosphatidylcholine (PC) to LPC ratio in the pathological group indicating potential alterations in membrane lipid homeostasis. To the best of our knowledge, this study is the first to report a distinct lipid signature in serum-derived exosomes from RR-MS patients using direct MALDI-TOF/MS analysis.</p>\",\"PeriodicalId\":12432,\"journal\":{\"name\":\"Frontiers in Cellular Neuroscience\",\"volume\":\"19 \",\"pages\":\"1613618\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12245768/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Cellular Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fncel.2025.1613618\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cellular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncel.2025.1613618","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Circulating exosomes with unique lipid signature in relapsing remitting multiple sclerosis.
Exosomes are small, membrane-bound vesicles secreted by most cell types into the extracellular environment. They play a crucial role in intercellular communication by transporting bioactive molecules, including proteins, lipids, and RNAs, thereby influencing the phenotype and potentially the genotype in recipient cells. In recent years, exosomes have gained increasing attention in the study of pathophysiological conditions and numerous diseases, including multiple sclerosis (MS), an autoimmune disorder with myelin sheath and neuroaxonal damage in the central nervous system. In this study, we isolated and purified serum-derived exosomes from patients with relapsing remitting MS (RR-MS) and characterized their lipid profiles using matrix-assisted laser desorption ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS). Lipid analysis was performed in both negative and positive ion modes on intact exosomes, bypassing lipid extraction steps and significantly reducing sample-processing time. The lipid profiles of RR-MS exosomes were compared to those of exosomes isolated from the serum of healthy subjects (HS), and statistical analysis was applied to mass spectra to identify potential lipid biomarkers. The specific phospholipid marker of exosomal membranes, bis(monoacylglycero)phosphate (BMP), was clearly detected in both MALDI lipid profiles, with no significant differences in its content between the two sample groups. However, RR-MS exosomes exhibited significantly lower levels of phosphatidic acid (PA) compared to HS exosomes, despite PA being a key structural component of extracellular vesicles. Notably, comparative analysis revealed an enrichment of several lysophosphatidylcholine (LPC) species in RR-MS exosome membranes, aligning with their known proinflammatory role in MS pathology. Our most significant finding was a markedly lower phosphatidylcholine (PC) to LPC ratio in the pathological group indicating potential alterations in membrane lipid homeostasis. To the best of our knowledge, this study is the first to report a distinct lipid signature in serum-derived exosomes from RR-MS patients using direct MALDI-TOF/MS analysis.
期刊介绍:
Frontiers in Cellular Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the cellular mechanisms underlying cell function in the nervous system across all species. Specialty Chief Editors Egidio D‘Angelo at the University of Pavia and Christian Hansel at the University of Chicago are supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.