{"title":"通过机器学习预测T细胞受体-肽结合的主要组织相容性复合体的路线图:一瞥和预见。","authors":"Furong Qi, Qiang Huang, Yao Xuan, Yingyin Cao, Yunyun Shen, Yihan Ren, Zhe Liu, Zheng Zhang","doi":"10.1093/bib/bbaf327","DOIUrl":null,"url":null,"abstract":"<p><p>Cytotoxic T lymphocytes (CTLs) play a key role in the defense of cancer and infectious diseases. CTLs are mainly activated by T cell receptors (TCRs) after recognizing the peptide-bound class I major histocompatibility complex, and subsequently kill virus-infected cells and tumor cells. Therefore, identification of antigen-specific CTLs and their TCRs is a promising agent for T-cell based intervention. Currently, the experimental identification and validation of antigen-specific CTLs is well-used but extremely resource-intensive. The machine learning methods for TCR-pMHC prediction are growing interest particularly with advances in single-cell technologies. This review clarifies the key biological processes involved in TCR-pMHC binding. After comprehensively comparing the advantages and disadvantages of several state-of-the-art machine learning algorithms for TCR-pMHC prediction, we point out the discrepancies with these machine learning methods under specific disease conditions. Finally, we proposed a roadmap of TCR-pMHC prediction. This roadmap would enable more accurate TCR-pMHC binding prediction when improving data quality, encoding and embedding methods, training models, and application context. This review could facilitate the development of T-cell based vaccines and therapy.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 4","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A roadmap for T cell receptor-peptide-bound major histocompatibility complex binding prediction by machine learning: glimpse and foresight.\",\"authors\":\"Furong Qi, Qiang Huang, Yao Xuan, Yingyin Cao, Yunyun Shen, Yihan Ren, Zhe Liu, Zheng Zhang\",\"doi\":\"10.1093/bib/bbaf327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cytotoxic T lymphocytes (CTLs) play a key role in the defense of cancer and infectious diseases. CTLs are mainly activated by T cell receptors (TCRs) after recognizing the peptide-bound class I major histocompatibility complex, and subsequently kill virus-infected cells and tumor cells. Therefore, identification of antigen-specific CTLs and their TCRs is a promising agent for T-cell based intervention. Currently, the experimental identification and validation of antigen-specific CTLs is well-used but extremely resource-intensive. The machine learning methods for TCR-pMHC prediction are growing interest particularly with advances in single-cell technologies. This review clarifies the key biological processes involved in TCR-pMHC binding. After comprehensively comparing the advantages and disadvantages of several state-of-the-art machine learning algorithms for TCR-pMHC prediction, we point out the discrepancies with these machine learning methods under specific disease conditions. Finally, we proposed a roadmap of TCR-pMHC prediction. This roadmap would enable more accurate TCR-pMHC binding prediction when improving data quality, encoding and embedding methods, training models, and application context. This review could facilitate the development of T-cell based vaccines and therapy.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 4\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf327\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf327","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A roadmap for T cell receptor-peptide-bound major histocompatibility complex binding prediction by machine learning: glimpse and foresight.
Cytotoxic T lymphocytes (CTLs) play a key role in the defense of cancer and infectious diseases. CTLs are mainly activated by T cell receptors (TCRs) after recognizing the peptide-bound class I major histocompatibility complex, and subsequently kill virus-infected cells and tumor cells. Therefore, identification of antigen-specific CTLs and their TCRs is a promising agent for T-cell based intervention. Currently, the experimental identification and validation of antigen-specific CTLs is well-used but extremely resource-intensive. The machine learning methods for TCR-pMHC prediction are growing interest particularly with advances in single-cell technologies. This review clarifies the key biological processes involved in TCR-pMHC binding. After comprehensively comparing the advantages and disadvantages of several state-of-the-art machine learning algorithms for TCR-pMHC prediction, we point out the discrepancies with these machine learning methods under specific disease conditions. Finally, we proposed a roadmap of TCR-pMHC prediction. This roadmap would enable more accurate TCR-pMHC binding prediction when improving data quality, encoding and embedding methods, training models, and application context. This review could facilitate the development of T-cell based vaccines and therapy.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.