GPNMB/HIF-1α相互调控抑制急性一氧化碳中毒后迟发性脑病神经元铁下垂。

IF 6.2 2区 医学 Q1 NEUROSCIENCES
Zuolong Liu, Lanyue Sun, Nan Gao, Wei Li, Li Pang
{"title":"GPNMB/HIF-1α相互调控抑制急性一氧化碳中毒后迟发性脑病神经元铁下垂。","authors":"Zuolong Liu, Lanyue Sun, Nan Gao, Wei Li, Li Pang","doi":"10.1186/s40478-025-02069-x","DOIUrl":null,"url":null,"abstract":"<p><p>Delayed encephalopathy after acute carbon monoxide poisoning (DEACMP) is the most common complication after acute carbon monoxide (CO) poisoning. However, the pathogenesis of DEACMP remains ambiguous. The neuroprotective role of GPNMB has been observed in amyotrophic lateral sclerosis and Parkinson's disease. GPNMB was elevated in the brain tissues of DEACMP rats, while its function in DEACMP remains unclear. In this study, a CO poisoning rat model and oxygen-glucose deprivation (OGD)-treated PC-12 cells were established as an in vivo and in vitro DEACMP model, respectively. The ferroptosis inhibitor Ferrostatin-1 (Fer-1) ameliorated cognitive impairment, inflammation and oxidative stress of rats with DEACMP as assessed by Morris Water Maze test, ELISA assay and commercial kits of oxidative markers. Immunofluorescence, qRT-PCR or western blot showed that GPNMB was elevated in CA1 hippocampal tissues of CO-poisoned rats. Additionally, TUNEL staining, ELISA assay and western blot revealed that GPNMB rescued OGD-induced cell apoptosis, inflammation and ferroptosis in PC-12 cells. Mechanistical study showed that STAT3 was a transcriptional activator of GPNMB as detected by luciferase and ChIP assays, and co-immunoprecipitation and immunofluorescence staining revealed that GPNMB stabilized HIF-1α by direct binding. Functionally, GPNMB protected against OGD-induced impairments via inducing HIF-1α. Furthermore, GPNMB attenuated cognitive impairment, oxidative stress and neuronal ferroptosis of rats with DEACMP. In conclusion, GPNMB/HIF-1α exhibited neuroprotective effects via suppressing ferroptosis in DEACMP.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"13 1","pages":"154"},"PeriodicalIF":6.2000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257678/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reciprocal regulation of GPNMB/HIF-1α for Inhibition of neuronal ferroptosis in delayed encephalopathy after acute carbon monoxide poisoning.\",\"authors\":\"Zuolong Liu, Lanyue Sun, Nan Gao, Wei Li, Li Pang\",\"doi\":\"10.1186/s40478-025-02069-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Delayed encephalopathy after acute carbon monoxide poisoning (DEACMP) is the most common complication after acute carbon monoxide (CO) poisoning. However, the pathogenesis of DEACMP remains ambiguous. The neuroprotective role of GPNMB has been observed in amyotrophic lateral sclerosis and Parkinson's disease. GPNMB was elevated in the brain tissues of DEACMP rats, while its function in DEACMP remains unclear. In this study, a CO poisoning rat model and oxygen-glucose deprivation (OGD)-treated PC-12 cells were established as an in vivo and in vitro DEACMP model, respectively. The ferroptosis inhibitor Ferrostatin-1 (Fer-1) ameliorated cognitive impairment, inflammation and oxidative stress of rats with DEACMP as assessed by Morris Water Maze test, ELISA assay and commercial kits of oxidative markers. Immunofluorescence, qRT-PCR or western blot showed that GPNMB was elevated in CA1 hippocampal tissues of CO-poisoned rats. Additionally, TUNEL staining, ELISA assay and western blot revealed that GPNMB rescued OGD-induced cell apoptosis, inflammation and ferroptosis in PC-12 cells. Mechanistical study showed that STAT3 was a transcriptional activator of GPNMB as detected by luciferase and ChIP assays, and co-immunoprecipitation and immunofluorescence staining revealed that GPNMB stabilized HIF-1α by direct binding. Functionally, GPNMB protected against OGD-induced impairments via inducing HIF-1α. Furthermore, GPNMB attenuated cognitive impairment, oxidative stress and neuronal ferroptosis of rats with DEACMP. In conclusion, GPNMB/HIF-1α exhibited neuroprotective effects via suppressing ferroptosis in DEACMP.</p>\",\"PeriodicalId\":6914,\"journal\":{\"name\":\"Acta Neuropathologica Communications\",\"volume\":\"13 1\",\"pages\":\"154\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257678/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Neuropathologica Communications\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40478-025-02069-x\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-025-02069-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

急性一氧化碳中毒后迟发性脑病(DEACMP)是急性一氧化碳中毒后最常见的并发症。然而,DEACMP的发病机制仍不清楚。GPNMB在肌萎缩性侧索硬化症和帕金森病中具有神经保护作用。GPNMB在DEACMP大鼠脑组织中升高,但其在DEACMP中的功能尚不清楚。本研究分别建立CO中毒大鼠模型和氧葡萄糖剥夺(OGD)处理的PC-12细胞作为体内和体外DEACMP模型。通过Morris水迷宫实验、ELISA和氧化标记物商用试剂盒评估,铁抑制剂铁抑素-1 (ferl -1)可改善DEACMP大鼠的认知功能障碍、炎症和氧化应激。免疫荧光、qRT-PCR或western blot显示co中毒大鼠CA1海马组织中GPNMB升高。TUNEL染色、ELISA和western blot结果显示,GPNMB可挽救ogd诱导的PC-12细胞凋亡、炎症和铁下垂。机制研究表明,通过荧光素酶和ChIP检测,STAT3是GPNMB的转录激活因子,免疫共沉淀和免疫荧光染色显示GPNMB通过直接结合稳定HIF-1α。在功能上,GPNMB通过诱导HIF-1α来保护ogd诱导的损伤。此外,GPNMB还能减轻DEACMP大鼠的认知功能障碍、氧化应激和神经元下垂。综上所述,GPNMB/HIF-1α通过抑制DEACMP的铁下垂表现出神经保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reciprocal regulation of GPNMB/HIF-1α for Inhibition of neuronal ferroptosis in delayed encephalopathy after acute carbon monoxide poisoning.

Delayed encephalopathy after acute carbon monoxide poisoning (DEACMP) is the most common complication after acute carbon monoxide (CO) poisoning. However, the pathogenesis of DEACMP remains ambiguous. The neuroprotective role of GPNMB has been observed in amyotrophic lateral sclerosis and Parkinson's disease. GPNMB was elevated in the brain tissues of DEACMP rats, while its function in DEACMP remains unclear. In this study, a CO poisoning rat model and oxygen-glucose deprivation (OGD)-treated PC-12 cells were established as an in vivo and in vitro DEACMP model, respectively. The ferroptosis inhibitor Ferrostatin-1 (Fer-1) ameliorated cognitive impairment, inflammation and oxidative stress of rats with DEACMP as assessed by Morris Water Maze test, ELISA assay and commercial kits of oxidative markers. Immunofluorescence, qRT-PCR or western blot showed that GPNMB was elevated in CA1 hippocampal tissues of CO-poisoned rats. Additionally, TUNEL staining, ELISA assay and western blot revealed that GPNMB rescued OGD-induced cell apoptosis, inflammation and ferroptosis in PC-12 cells. Mechanistical study showed that STAT3 was a transcriptional activator of GPNMB as detected by luciferase and ChIP assays, and co-immunoprecipitation and immunofluorescence staining revealed that GPNMB stabilized HIF-1α by direct binding. Functionally, GPNMB protected against OGD-induced impairments via inducing HIF-1α. Furthermore, GPNMB attenuated cognitive impairment, oxidative stress and neuronal ferroptosis of rats with DEACMP. In conclusion, GPNMB/HIF-1α exhibited neuroprotective effects via suppressing ferroptosis in DEACMP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Neuropathologica Communications
Acta Neuropathologica Communications Medicine-Pathology and Forensic Medicine
CiteScore
11.20
自引率
2.80%
发文量
162
审稿时长
8 weeks
期刊介绍: "Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders. ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信