{"title":"乳清蛋白通过调节SIRT1/Nrf2/HO-1轴和AMPK/TSC2/mTOR/4EBP1通路减轻小鼠骨骼肌氧化应激损伤并促进蛋白质合成","authors":"Guangqi Li, Liying Shang, Xin Wang, Lequn Zhang, Yuchu Zhao, Weifeng Ni, Xueyuan Bai, Junyi Liu","doi":"10.1111/1750-3841.70286","DOIUrl":null,"url":null,"abstract":"<p>Whey protein (WP) can improve muscle mass and strength. However, its effects and underlying molecular mechanism in promoting recovery from muscle damage caused by excessive physical exercise remains unknown. Therefore, the present study aimed to investigate the therapeutic effect of WP on skeletal muscle injury caused by exogenous oxidants and excessive physical exercise and the potential underlying mechanism. An oxidative stress injury model of mouse skeletal muscle cells was established using hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and excessive physical exercise. The results revealed that WP effectively improved the migration and differentiation of C2C12 cells exposed to H<sub>2</sub>O<sub>2</sub>. Moreover, WP significantly increased the body weight of mice following excessive physical exercise. It also reduced food intake, improved behavioral parameters, enhanced skeletal muscle morphology and function, and promoted protein synthesis, thereby alleviating oxidative stress injury in skeletal muscles. The results further indicated that the mechanism underlying the mitigation of oxidative stress injury in skeletal muscles may involve the silent information regulator sirtuin 1 (SIRT1)/ NF-E2-related factor-2 (Nrf2)/ hemeoxygenase-1 (HO-1) axis. This axis could, in turn, activates the AMP-activated protein kinase (AMPK)/tuberous sclerosis complex subunit 2 (TSC2)/mammalian target of rapamycin (mTOR)/4E-binding protein 1 (4EBP1) pathway, thereby promoting protein synthesis and improving the physiological function of skeletal muscles. This study provides important insights into the role of WP in promoting recovery from muscle damage, offering a basis for future research on WP-based nutritional intervention strategies.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":"90 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1750-3841.70286","citationCount":"0","resultStr":"{\"title\":\"Whey Protein Mitigates Oxidative Stress Injury and Improves Protein Synthesis in Mouse Skeletal Muscle by Regulating the SIRT1/Nrf2/HO-1 Axis and AMPK/TSC2/mTOR/4EBP1 Pathway\",\"authors\":\"Guangqi Li, Liying Shang, Xin Wang, Lequn Zhang, Yuchu Zhao, Weifeng Ni, Xueyuan Bai, Junyi Liu\",\"doi\":\"10.1111/1750-3841.70286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Whey protein (WP) can improve muscle mass and strength. However, its effects and underlying molecular mechanism in promoting recovery from muscle damage caused by excessive physical exercise remains unknown. Therefore, the present study aimed to investigate the therapeutic effect of WP on skeletal muscle injury caused by exogenous oxidants and excessive physical exercise and the potential underlying mechanism. An oxidative stress injury model of mouse skeletal muscle cells was established using hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and excessive physical exercise. The results revealed that WP effectively improved the migration and differentiation of C2C12 cells exposed to H<sub>2</sub>O<sub>2</sub>. Moreover, WP significantly increased the body weight of mice following excessive physical exercise. It also reduced food intake, improved behavioral parameters, enhanced skeletal muscle morphology and function, and promoted protein synthesis, thereby alleviating oxidative stress injury in skeletal muscles. The results further indicated that the mechanism underlying the mitigation of oxidative stress injury in skeletal muscles may involve the silent information regulator sirtuin 1 (SIRT1)/ NF-E2-related factor-2 (Nrf2)/ hemeoxygenase-1 (HO-1) axis. This axis could, in turn, activates the AMP-activated protein kinase (AMPK)/tuberous sclerosis complex subunit 2 (TSC2)/mammalian target of rapamycin (mTOR)/4E-binding protein 1 (4EBP1) pathway, thereby promoting protein synthesis and improving the physiological function of skeletal muscles. This study provides important insights into the role of WP in promoting recovery from muscle damage, offering a basis for future research on WP-based nutritional intervention strategies.</p>\",\"PeriodicalId\":193,\"journal\":{\"name\":\"Journal of Food Science\",\"volume\":\"90 7\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1750-3841.70286\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.70286\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.70286","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Whey Protein Mitigates Oxidative Stress Injury and Improves Protein Synthesis in Mouse Skeletal Muscle by Regulating the SIRT1/Nrf2/HO-1 Axis and AMPK/TSC2/mTOR/4EBP1 Pathway
Whey protein (WP) can improve muscle mass and strength. However, its effects and underlying molecular mechanism in promoting recovery from muscle damage caused by excessive physical exercise remains unknown. Therefore, the present study aimed to investigate the therapeutic effect of WP on skeletal muscle injury caused by exogenous oxidants and excessive physical exercise and the potential underlying mechanism. An oxidative stress injury model of mouse skeletal muscle cells was established using hydrogen peroxide (H2O2) and excessive physical exercise. The results revealed that WP effectively improved the migration and differentiation of C2C12 cells exposed to H2O2. Moreover, WP significantly increased the body weight of mice following excessive physical exercise. It also reduced food intake, improved behavioral parameters, enhanced skeletal muscle morphology and function, and promoted protein synthesis, thereby alleviating oxidative stress injury in skeletal muscles. The results further indicated that the mechanism underlying the mitigation of oxidative stress injury in skeletal muscles may involve the silent information regulator sirtuin 1 (SIRT1)/ NF-E2-related factor-2 (Nrf2)/ hemeoxygenase-1 (HO-1) axis. This axis could, in turn, activates the AMP-activated protein kinase (AMPK)/tuberous sclerosis complex subunit 2 (TSC2)/mammalian target of rapamycin (mTOR)/4E-binding protein 1 (4EBP1) pathway, thereby promoting protein synthesis and improving the physiological function of skeletal muscles. This study provides important insights into the role of WP in promoting recovery from muscle damage, offering a basis for future research on WP-based nutritional intervention strategies.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.