co2诱导的水生酸化对环境DNA和RNA脱落和持久性的影响

IF 6.2 Q1 Agricultural and Biological Sciences
Mark Louie D. Lopez, Kate C. Rolheiser, Jacob Etzkorn, Jacob J. Imbery, Matthew A. Lemay, Iria Gimenez, Caren C. Helbing
{"title":"co2诱导的水生酸化对环境DNA和RNA脱落和持久性的影响","authors":"Mark Louie D. Lopez,&nbsp;Kate C. Rolheiser,&nbsp;Jacob Etzkorn,&nbsp;Jacob J. Imbery,&nbsp;Matthew A. Lemay,&nbsp;Iria Gimenez,&nbsp;Caren C. Helbing","doi":"10.1002/edn3.70158","DOIUrl":null,"url":null,"abstract":"<p>Anticipated future increases in CO<sub>2</sub> levels are predicted to have a diverse array of lethal and non-lethal effects on the marine ecosystem. While there has been extensive research on the physiological impacts of ocean acidification on marine species, our understanding of how increasing levels of carbon dioxide affect the shedding and decay of environmental DNA and RNA (eDNA/eRNA) in marine habitats is limited. This may impede the effective adoption of environmental nucleic acid–based molecular tools for monitoring marine biodiversity and detecting rare or invasive species. In the present study, we conducted mesocosm experiments to determine the shedding and decay rate constants of eDNA and eRNA in <i>M. gigas</i> (<i>Magallana</i> [<i>Crassostrea</i>] <i>gigas</i>) using mitochondrially encoded tRNA leucine 1 (<i>mt-tl1</i>) marker at various partial pressures of CO<sub>2</sub> in seawater. To our knowledge, this is the first study manipulating seawater pH using CO<sub>2</sub>. We developed a sensitive and specific quantitative PCR-based assay to detect <i>M. gigas</i> eDNA and eRNA. Higher CO<sub>2</sub> levels increased shedding rates, indicating greater organism stress and biological effects on oysters. Additionally, increased CO<sub>2</sub> accelerates DNA and RNA decay, suggesting that ocean acidification may impact the reliability of eDNA-based biodiversity monitoring. Furthermore, eRNA displayed lower steady-state concentrations and a shorter persistence time in comparison to eDNA, as is consistent with known biochemical properties of the molecules. These findings are presented in the context of previous work that adjusted pH through acid–base adjustment and temperature and highlight the importance of considering ocean acidification caused by differing CO<sub>2</sub> levels when using molecular tools for marine conservation and fisheries management.</p>","PeriodicalId":52828,"journal":{"name":"Environmental DNA","volume":"7 4","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/edn3.70158","citationCount":"0","resultStr":"{\"title\":\"Impact of CO2-Induced Aquatic Acidification on Environmental DNA and RNA Shedding and Persistence\",\"authors\":\"Mark Louie D. Lopez,&nbsp;Kate C. Rolheiser,&nbsp;Jacob Etzkorn,&nbsp;Jacob J. Imbery,&nbsp;Matthew A. Lemay,&nbsp;Iria Gimenez,&nbsp;Caren C. Helbing\",\"doi\":\"10.1002/edn3.70158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Anticipated future increases in CO<sub>2</sub> levels are predicted to have a diverse array of lethal and non-lethal effects on the marine ecosystem. While there has been extensive research on the physiological impacts of ocean acidification on marine species, our understanding of how increasing levels of carbon dioxide affect the shedding and decay of environmental DNA and RNA (eDNA/eRNA) in marine habitats is limited. This may impede the effective adoption of environmental nucleic acid–based molecular tools for monitoring marine biodiversity and detecting rare or invasive species. In the present study, we conducted mesocosm experiments to determine the shedding and decay rate constants of eDNA and eRNA in <i>M. gigas</i> (<i>Magallana</i> [<i>Crassostrea</i>] <i>gigas</i>) using mitochondrially encoded tRNA leucine 1 (<i>mt-tl1</i>) marker at various partial pressures of CO<sub>2</sub> in seawater. To our knowledge, this is the first study manipulating seawater pH using CO<sub>2</sub>. We developed a sensitive and specific quantitative PCR-based assay to detect <i>M. gigas</i> eDNA and eRNA. Higher CO<sub>2</sub> levels increased shedding rates, indicating greater organism stress and biological effects on oysters. Additionally, increased CO<sub>2</sub> accelerates DNA and RNA decay, suggesting that ocean acidification may impact the reliability of eDNA-based biodiversity monitoring. Furthermore, eRNA displayed lower steady-state concentrations and a shorter persistence time in comparison to eDNA, as is consistent with known biochemical properties of the molecules. These findings are presented in the context of previous work that adjusted pH through acid–base adjustment and temperature and highlight the importance of considering ocean acidification caused by differing CO<sub>2</sub> levels when using molecular tools for marine conservation and fisheries management.</p>\",\"PeriodicalId\":52828,\"journal\":{\"name\":\"Environmental DNA\",\"volume\":\"7 4\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/edn3.70158\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental DNA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/edn3.70158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental DNA","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/edn3.70158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

预计未来二氧化碳水平的增加将对海洋生态系统产生一系列致命和非致命的影响。虽然人们已经对海洋酸化对海洋物种的生理影响进行了广泛的研究,但我们对二氧化碳水平增加如何影响海洋栖息地环境DNA和RNA (eDNA/eRNA)的脱落和衰变的理解有限。这可能会阻碍基于环境核酸的分子工具在监测海洋生物多样性和检测稀有或入侵物种方面的有效采用。在本研究中,我们利用线粒体编码tRNA亮氨酸1 (mttl1)标记物在海水中CO2的不同分压下,进行了中尺度实验,测定了M. gigas (Magallana[长牡蛎]gigas)体内eDNA和eRNA的脱落和衰减速率常数。据我们所知,这是第一个利用二氧化碳控制海水pH值的研究。我们开发了一种敏感和特异性的基于pcr的定量检测方法来检测巨分枝杆菌的eDNA和eRNA。较高的二氧化碳水平增加了牡蛎的脱落率,这表明牡蛎受到更大的生物体压力和生物效应。此外,二氧化碳的增加加速了DNA和RNA的衰变,这表明海洋酸化可能会影响基于edna的生物多样性监测的可靠性。此外,与eDNA相比,eRNA表现出更低的稳态浓度和更短的持续时间,这与已知分子的生化特性一致。这些发现是在先前通过酸碱调节和温度调节pH值的工作背景下提出的,并强调了在使用分子工具进行海洋保护和渔业管理时考虑由不同二氧化碳水平引起的海洋酸化的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Impact of CO2-Induced Aquatic Acidification on Environmental DNA and RNA Shedding and Persistence

Impact of CO2-Induced Aquatic Acidification on Environmental DNA and RNA Shedding and Persistence

Anticipated future increases in CO2 levels are predicted to have a diverse array of lethal and non-lethal effects on the marine ecosystem. While there has been extensive research on the physiological impacts of ocean acidification on marine species, our understanding of how increasing levels of carbon dioxide affect the shedding and decay of environmental DNA and RNA (eDNA/eRNA) in marine habitats is limited. This may impede the effective adoption of environmental nucleic acid–based molecular tools for monitoring marine biodiversity and detecting rare or invasive species. In the present study, we conducted mesocosm experiments to determine the shedding and decay rate constants of eDNA and eRNA in M. gigas (Magallana [Crassostrea] gigas) using mitochondrially encoded tRNA leucine 1 (mt-tl1) marker at various partial pressures of CO2 in seawater. To our knowledge, this is the first study manipulating seawater pH using CO2. We developed a sensitive and specific quantitative PCR-based assay to detect M. gigas eDNA and eRNA. Higher CO2 levels increased shedding rates, indicating greater organism stress and biological effects on oysters. Additionally, increased CO2 accelerates DNA and RNA decay, suggesting that ocean acidification may impact the reliability of eDNA-based biodiversity monitoring. Furthermore, eRNA displayed lower steady-state concentrations and a shorter persistence time in comparison to eDNA, as is consistent with known biochemical properties of the molecules. These findings are presented in the context of previous work that adjusted pH through acid–base adjustment and temperature and highlight the importance of considering ocean acidification caused by differing CO2 levels when using molecular tools for marine conservation and fisheries management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental DNA
Environmental DNA Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
11.00
自引率
0.00%
发文量
99
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信