基于多尺度特征提取和深度交互注意融合机制的药物-靶标相互作用预测

IF 4.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Jia Peng, Xiaoyu Liu, Yuxuan Liao, Lei Wang, Xianyou Zhu
{"title":"基于多尺度特征提取和深度交互注意融合机制的药物-靶标相互作用预测","authors":"Jia Peng,&nbsp;Xiaoyu Liu,&nbsp;Yuxuan Liao,&nbsp;Lei Wang,&nbsp;Xianyou Zhu","doi":"10.1002/jcc.70170","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Drug–target interaction prediction serves as a crucial component in accelerating drug discovery. To overcome current limitations in deep learning approaches, specifically the inadequate representation of local features and insufficient modeling of drug and target information interactions, we propose a multiscale feature extraction coupled multilayer cross-interaction network (MSCMLCIDTI). The model uses multiscale convolutional blocks to extract structural fingerprints of drug compounds and amino acid sequences at different scales for multigranularity pattern recognition across spatial domains, followed by gated attention to obtain multidimensional features. This multidimensional feature extraction enhances the model's capability to identify critical binding sites between pharmacological compounds and their biological targets. Furthermore, we implement a deep cross-interaction mechanism utilizing multilayer attention-based interactions to model complex relationships between distinct drug substructures and protein fragments. This design empowers accurate identification of sophisticated interaction signatures in pharmaceutical target complexes. Comprehensive validation across four open-access benchmark datasets reveals our framework's superior predictive accuracy compared to existing leading-edge models.</p>\n </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 19","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MSCMLCIDTI: Drug–Target Interaction Prediction Based on Multiscale Feature Extraction and Deep Interactive Attention Fusion Mechanisms\",\"authors\":\"Jia Peng,&nbsp;Xiaoyu Liu,&nbsp;Yuxuan Liao,&nbsp;Lei Wang,&nbsp;Xianyou Zhu\",\"doi\":\"10.1002/jcc.70170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Drug–target interaction prediction serves as a crucial component in accelerating drug discovery. To overcome current limitations in deep learning approaches, specifically the inadequate representation of local features and insufficient modeling of drug and target information interactions, we propose a multiscale feature extraction coupled multilayer cross-interaction network (MSCMLCIDTI). The model uses multiscale convolutional blocks to extract structural fingerprints of drug compounds and amino acid sequences at different scales for multigranularity pattern recognition across spatial domains, followed by gated attention to obtain multidimensional features. This multidimensional feature extraction enhances the model's capability to identify critical binding sites between pharmacological compounds and their biological targets. Furthermore, we implement a deep cross-interaction mechanism utilizing multilayer attention-based interactions to model complex relationships between distinct drug substructures and protein fragments. This design empowers accurate identification of sophisticated interaction signatures in pharmaceutical target complexes. Comprehensive validation across four open-access benchmark datasets reveals our framework's superior predictive accuracy compared to existing leading-edge models.</p>\\n </div>\",\"PeriodicalId\":188,\"journal\":{\"name\":\"Journal of Computational Chemistry\",\"volume\":\"46 19\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70170\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70170","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

药物-靶标相互作用预测是加速药物发现的重要组成部分。为了克服当前深度学习方法的局限性,特别是局部特征的不充分表示和药物与靶标信息相互作用的不充分建模,我们提出了一种多尺度特征提取耦合多层交叉相互作用网络(MSCMLCIDTI)。该模型利用多尺度卷积块提取不同尺度的药物化合物和氨基酸序列的结构指纹,进行跨空间域的多粒度模式识别,然后进行门控关注,获得多维特征。这种多维特征提取增强了模型识别药理学化合物与其生物靶点之间关键结合位点的能力。此外,我们实现了一个深度交叉相互作用机制,利用多层基于注意力的相互作用来模拟不同药物亚结构和蛋白质片段之间的复杂关系。这种设计能够准确地识别药物靶复合物中复杂的相互作用特征。对四个开放获取基准数据集的全面验证表明,与现有的前沿模型相比,我们的框架具有卓越的预测准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MSCMLCIDTI: Drug–Target Interaction Prediction Based on Multiscale Feature Extraction and Deep Interactive Attention Fusion Mechanisms

MSCMLCIDTI: Drug–Target Interaction Prediction Based on Multiscale Feature Extraction and Deep Interactive Attention Fusion Mechanisms

Drug–target interaction prediction serves as a crucial component in accelerating drug discovery. To overcome current limitations in deep learning approaches, specifically the inadequate representation of local features and insufficient modeling of drug and target information interactions, we propose a multiscale feature extraction coupled multilayer cross-interaction network (MSCMLCIDTI). The model uses multiscale convolutional blocks to extract structural fingerprints of drug compounds and amino acid sequences at different scales for multigranularity pattern recognition across spatial domains, followed by gated attention to obtain multidimensional features. This multidimensional feature extraction enhances the model's capability to identify critical binding sites between pharmacological compounds and their biological targets. Furthermore, we implement a deep cross-interaction mechanism utilizing multilayer attention-based interactions to model complex relationships between distinct drug substructures and protein fragments. This design empowers accurate identification of sophisticated interaction signatures in pharmaceutical target complexes. Comprehensive validation across four open-access benchmark datasets reveals our framework's superior predictive accuracy compared to existing leading-edge models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信