铁路异常检测的模糊yolo模型:有限样本和干扰条件下的鲁棒性

IF 2.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Liyuan Yang, Ming Yang, Ghazali Osman, Safawi Abdul Rahman, Muhammad Firdaus Mustapha
{"title":"铁路异常检测的模糊yolo模型:有限样本和干扰条件下的鲁棒性","authors":"Liyuan Yang,&nbsp;Ming Yang,&nbsp;Ghazali Osman,&nbsp;Safawi Abdul Rahman,&nbsp;Muhammad Firdaus Mustapha","doi":"10.1049/ipr2.70156","DOIUrl":null,"url":null,"abstract":"<p>Accurate detection of surface anomalies in railway tracks is critical for ensuring train operation safety and enabling intelligent railway management. However, the scarcity and pronounced imbalance of anomaly samples significantly constrain model training and generalisation. Moreover, complex environmental factors such as illumination variability, sensor noise, and motion blur pose additional challenges to model robustness in real-world applications. This study presents a Fuzzy-YOLO model tailored for limited sample datasets. Built upon YOLOv11, Fuzzy-YOLO incorporates a fuzzy-non-maximum suppression (NMS) mechanism and integrates a lightweight fuzzy residual neural network (RFNN-Res) module based on fuzzy logic for anomaly classification. The final anomaly type is determined via a weighted voting strategy. Experimental evaluations demonstrate that Fuzzy-YOLO achieves a mean average precision (mAP) of 98.90%, exhibiting notably enhanced stability compared to YOLOv11 under conditions of varying illumination, noise, and motion-induced blur.</p>","PeriodicalId":56303,"journal":{"name":"IET Image Processing","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ipr2.70156","citationCount":"0","resultStr":"{\"title\":\"Fuzzy-YOLO Model for Rail Anomaly Detection: Robustness Under Limited Sample and Interference Conditions\",\"authors\":\"Liyuan Yang,&nbsp;Ming Yang,&nbsp;Ghazali Osman,&nbsp;Safawi Abdul Rahman,&nbsp;Muhammad Firdaus Mustapha\",\"doi\":\"10.1049/ipr2.70156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate detection of surface anomalies in railway tracks is critical for ensuring train operation safety and enabling intelligent railway management. However, the scarcity and pronounced imbalance of anomaly samples significantly constrain model training and generalisation. Moreover, complex environmental factors such as illumination variability, sensor noise, and motion blur pose additional challenges to model robustness in real-world applications. This study presents a Fuzzy-YOLO model tailored for limited sample datasets. Built upon YOLOv11, Fuzzy-YOLO incorporates a fuzzy-non-maximum suppression (NMS) mechanism and integrates a lightweight fuzzy residual neural network (RFNN-Res) module based on fuzzy logic for anomaly classification. The final anomaly type is determined via a weighted voting strategy. Experimental evaluations demonstrate that Fuzzy-YOLO achieves a mean average precision (mAP) of 98.90%, exhibiting notably enhanced stability compared to YOLOv11 under conditions of varying illumination, noise, and motion-induced blur.</p>\",\"PeriodicalId\":56303,\"journal\":{\"name\":\"IET Image Processing\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ipr2.70156\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ipr2.70156\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Image Processing","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ipr2.70156","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

铁路轨道表面异常的准确检测对于保障列车运行安全、实现铁路智能化管理至关重要。然而,异常样本的稀缺性和明显的不平衡性极大地限制了模型的训练和泛化。此外,复杂的环境因素,如照明可变性、传感器噪声和运动模糊,对现实世界应用中的模型鲁棒性提出了额外的挑战。本文提出了一种针对有限样本数据集的Fuzzy-YOLO模型。fuzzy- yolo在YOLOv11的基础上,引入了模糊非最大抑制(NMS)机制,并集成了基于模糊逻辑的轻量级模糊残差神经网络(RFNN-Res)模块进行异常分类。最终的异常类型通过加权投票策略确定。实验评估表明,Fuzzy-YOLO的平均精度(mAP)达到98.90%,在不同光照、噪声和运动引起的模糊条件下,与YOLOv11相比,具有显著增强的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fuzzy-YOLO Model for Rail Anomaly Detection: Robustness Under Limited Sample and Interference Conditions

Fuzzy-YOLO Model for Rail Anomaly Detection: Robustness Under Limited Sample and Interference Conditions

Accurate detection of surface anomalies in railway tracks is critical for ensuring train operation safety and enabling intelligent railway management. However, the scarcity and pronounced imbalance of anomaly samples significantly constrain model training and generalisation. Moreover, complex environmental factors such as illumination variability, sensor noise, and motion blur pose additional challenges to model robustness in real-world applications. This study presents a Fuzzy-YOLO model tailored for limited sample datasets. Built upon YOLOv11, Fuzzy-YOLO incorporates a fuzzy-non-maximum suppression (NMS) mechanism and integrates a lightweight fuzzy residual neural network (RFNN-Res) module based on fuzzy logic for anomaly classification. The final anomaly type is determined via a weighted voting strategy. Experimental evaluations demonstrate that Fuzzy-YOLO achieves a mean average precision (mAP) of 98.90%, exhibiting notably enhanced stability compared to YOLOv11 under conditions of varying illumination, noise, and motion-induced blur.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Image Processing
IET Image Processing 工程技术-工程:电子与电气
CiteScore
5.40
自引率
8.70%
发文量
282
审稿时长
6 months
期刊介绍: The IET Image Processing journal encompasses research areas related to the generation, processing and communication of visual information. The focus of the journal is the coverage of the latest research results in image and video processing, including image generation and display, enhancement and restoration, segmentation, colour and texture analysis, coding and communication, implementations and architectures as well as innovative applications. Principal topics include: Generation and Display - Imaging sensors and acquisition systems, illumination, sampling and scanning, quantization, colour reproduction, image rendering, display and printing systems, evaluation of image quality. Processing and Analysis - Image enhancement, restoration, segmentation, registration, multispectral, colour and texture processing, multiresolution processing and wavelets, morphological operations, stereoscopic and 3-D processing, motion detection and estimation, video and image sequence processing. Implementations and Architectures - Image and video processing hardware and software, design and construction, architectures and software, neural, adaptive, and fuzzy processing. Coding and Transmission - Image and video compression and coding, compression standards, noise modelling, visual information networks, streamed video. Retrieval and Multimedia - Storage of images and video, database design, image retrieval, video annotation and editing, mixed media incorporating visual information, multimedia systems and applications, image and video watermarking, steganography. Applications - Innovative application of image and video processing technologies to any field, including life sciences, earth sciences, astronomy, document processing and security. Current Special Issue Call for Papers: Evolutionary Computation for Image Processing - https://digital-library.theiet.org/files/IET_IPR_CFP_EC.pdf AI-Powered 3D Vision - https://digital-library.theiet.org/files/IET_IPR_CFP_AIPV.pdf Multidisciplinary advancement of Imaging Technologies: From Medical Diagnostics and Genomics to Cognitive Machine Vision, and Artificial Intelligence - https://digital-library.theiet.org/files/IET_IPR_CFP_IST.pdf Deep Learning for 3D Reconstruction - https://digital-library.theiet.org/files/IET_IPR_CFP_DLR.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信