基于软聚类的区域生成增强交通系统时空需求预测

IF 7.6 1区 工程技术 Q1 TRANSPORTATION SCIENCE & TECHNOLOGY
Kyoungok Kim , Peter Zhang
{"title":"基于软聚类的区域生成增强交通系统时空需求预测","authors":"Kyoungok Kim ,&nbsp;Peter Zhang","doi":"10.1016/j.trc.2025.105258","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate spatiotemporal demand prediction is crucial for the effective service management of various transportation platforms, such as ride-hailing and micromobility services. While existing research primarily focuses on developing better prediction algorithms for demand, the relatively overlooked process of region generation is also important. In particular, predictions based on improperly defined regions can lead to poor predictive performance due to the modifiable areal unit problem. Therefore, it is essential to generate regions that reflect actual spatiotemporal demand patterns before training prediction models. This study proposes a region generation technique using a soft clustering approach, allowing spatial atomic units to belong to multiple clusters, unlike the conventional hard clustering method where each unit belongs to only one cluster. The proposed method selects spatial atomic units located at cluster boundaries and allows them to be part of adjacent clusters, thereby maintaining the geographic continuity of each cluster while overcoming the limitations of fixed boundaries that fail to capture the influence between neighboring clusters. Using three real-world datasets, the performance in demand prediction is evaluated based on regions generated by the proposed method and several comparison methods. The results show that the proposed method not only achieves the highest prediction accuracy but also exhibits the lowest variance in prediction accuracy across clusters.</div></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":"179 ","pages":"Article 105258"},"PeriodicalIF":7.6000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing spatiotemporal demand prediction in transportation systems through region generation using soft clustering\",\"authors\":\"Kyoungok Kim ,&nbsp;Peter Zhang\",\"doi\":\"10.1016/j.trc.2025.105258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate spatiotemporal demand prediction is crucial for the effective service management of various transportation platforms, such as ride-hailing and micromobility services. While existing research primarily focuses on developing better prediction algorithms for demand, the relatively overlooked process of region generation is also important. In particular, predictions based on improperly defined regions can lead to poor predictive performance due to the modifiable areal unit problem. Therefore, it is essential to generate regions that reflect actual spatiotemporal demand patterns before training prediction models. This study proposes a region generation technique using a soft clustering approach, allowing spatial atomic units to belong to multiple clusters, unlike the conventional hard clustering method where each unit belongs to only one cluster. The proposed method selects spatial atomic units located at cluster boundaries and allows them to be part of adjacent clusters, thereby maintaining the geographic continuity of each cluster while overcoming the limitations of fixed boundaries that fail to capture the influence between neighboring clusters. Using three real-world datasets, the performance in demand prediction is evaluated based on regions generated by the proposed method and several comparison methods. The results show that the proposed method not only achieves the highest prediction accuracy but also exhibits the lowest variance in prediction accuracy across clusters.</div></div>\",\"PeriodicalId\":54417,\"journal\":{\"name\":\"Transportation Research Part C-Emerging Technologies\",\"volume\":\"179 \",\"pages\":\"Article 105258\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part C-Emerging Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968090X25002621\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X25002621","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

准确的时空需求预测对于网约车和微出行等各种交通平台的有效服务管理至关重要。虽然现有的研究主要集中在开发更好的需求预测算法,但相对被忽视的区域生成过程也很重要。特别是,由于可修改的面积单位问题,基于不正确定义区域的预测可能导致较差的预测性能。因此,在训练预测模型之前,有必要生成反映实际时空需求模式的区域。本研究提出了一种使用软聚类方法的区域生成技术,允许空间原子单元属于多个簇,而不像传统的硬聚类方法,每个单元只属于一个簇。该方法选择位于集群边界的空间原子单元,使其成为相邻集群的一部分,从而保持每个集群的地理连续性,同时克服了固定边界无法捕捉相邻集群之间影响的局限性。利用三个实际数据集,根据所提出方法生成的区域和几种比较方法对需求预测的性能进行了评估。结果表明,该方法不仅具有最高的预测精度,而且具有最小的聚类预测精度方差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing spatiotemporal demand prediction in transportation systems through region generation using soft clustering
Accurate spatiotemporal demand prediction is crucial for the effective service management of various transportation platforms, such as ride-hailing and micromobility services. While existing research primarily focuses on developing better prediction algorithms for demand, the relatively overlooked process of region generation is also important. In particular, predictions based on improperly defined regions can lead to poor predictive performance due to the modifiable areal unit problem. Therefore, it is essential to generate regions that reflect actual spatiotemporal demand patterns before training prediction models. This study proposes a region generation technique using a soft clustering approach, allowing spatial atomic units to belong to multiple clusters, unlike the conventional hard clustering method where each unit belongs to only one cluster. The proposed method selects spatial atomic units located at cluster boundaries and allows them to be part of adjacent clusters, thereby maintaining the geographic continuity of each cluster while overcoming the limitations of fixed boundaries that fail to capture the influence between neighboring clusters. Using three real-world datasets, the performance in demand prediction is evaluated based on regions generated by the proposed method and several comparison methods. The results show that the proposed method not only achieves the highest prediction accuracy but also exhibits the lowest variance in prediction accuracy across clusters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.80
自引率
12.00%
发文量
332
审稿时长
64 days
期刊介绍: Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信