{"title":"r价q-星形和r价q-凸函数的对数系数的Toeplitz和Hankel行列式","authors":"Pishtiwan Othman Sabir, Awara Ahmed Ali","doi":"10.1016/j.mex.2025.103463","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of the present paper is to extend the notions of <span><math><mi>q</mi></math></span>-starlikeness and <span><math><mi>q</mi></math></span>-convexity to encompass multivalent <span><math><mi>q</mi></math></span>-starlikeness and multivalent <span><math><mi>q</mi></math></span>-convexity. We systematically introduce and examine subfamilies of <span><math><mi>r</mi></math></span>-valently holomorphic functions within the open unit disk <span><math><mi>D</mi></math></span> by employing the fractional <span><math><mi>q</mi></math></span>-derivative operator, along with the principle of subordination between holomorphic functions.<ul><li><span>•</span><span><div>The families we define in this paper constitute a generalization of numerous established classes available in existing literature.</div></span></li><li><span>•</span><span><div>We derive the Fekete-Szegö inequalities for these newly introduced families.</div></span></li><li><span>•</span><span><div>As a result, we apply these findings to establish bounds for the Toeplitz and Hankel determinants <span><math><mrow><msub><mi>T</mi><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mi>γ</mi><mi>u</mi></msub><mo>)</mo></mrow><mo>,</mo><msub><mi>T</mi><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><msub><mi>γ</mi><mi>u</mi></msub><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mi>H</mi><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mi>γ</mi><mrow><mi>u</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, defined as follows:<span><span><span><math><mrow><msub><mi>T</mi><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mi>γ</mi><mi>u</mi></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mtable><mtr><mtd><msub><mi>γ</mi><mn>1</mn></msub></mtd><mtd><msub><mi>γ</mi><mn>2</mn></msub></mtd></mtr><mtr><mtd><msub><mi>γ</mi><mn>2</mn></msub></mtd><mtd><msub><mi>γ</mi><mn>1</mn></msub></mtd></mtr></mtable><mo>|</mo></mrow><mo>,</mo><mspace></mspace><msub><mi>T</mi><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><msub><mi>γ</mi><mi>u</mi></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mtable><mtr><mtd><msub><mi>γ</mi><mn>2</mn></msub></mtd><mtd><msub><mi>γ</mi><mn>3</mn></msub></mtd></mtr><mtr><mtd><msub><mi>γ</mi><mn>3</mn></msub></mtd><mtd><msub><mi>γ</mi><mn>2</mn></msub></mtd></mtr></mtable><mo>|</mo></mrow><mspace></mspace><mspace></mspace><mtext>and</mtext><mspace></mspace><mspace></mspace><msub><mi>H</mi><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mi>γ</mi><mi>u</mi></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mtable><mtr><mtd><msub><mi>γ</mi><mn>1</mn></msub></mtd><mtd><msub><mi>γ</mi><mn>2</mn></msub></mtd></mtr><mtr><mtd><msub><mi>γ</mi><mn>2</mn></msub></mtd><mtd><msub><mi>γ</mi><mn>3</mn></msub></mtd></mtr></mtable><mo>|</mo></mrow></mrow></math></span></span></span>where <span><math><mrow><msub><mi>γ</mi><mn>1</mn></msub><mo>,</mo><msub><mi>γ</mi><mn>2</mn></msub></mrow></math></span>, and <span><math><msub><mi>γ</mi><mn>3</mn></msub></math></span> denote the first, second, and third logarithmic coefficients of functions within the family of multivalent <span><math><mi>q</mi></math></span>-starlike and multivalent <span><math><mi>q</mi></math></span>-convex functions.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"15 ","pages":"Article 103463"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toeplitz and Hankel determinants of logarithmic coefficients for r-valent q-starlike and r-valent q-convex functions\",\"authors\":\"Pishtiwan Othman Sabir, Awara Ahmed Ali\",\"doi\":\"10.1016/j.mex.2025.103463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The aim of the present paper is to extend the notions of <span><math><mi>q</mi></math></span>-starlikeness and <span><math><mi>q</mi></math></span>-convexity to encompass multivalent <span><math><mi>q</mi></math></span>-starlikeness and multivalent <span><math><mi>q</mi></math></span>-convexity. We systematically introduce and examine subfamilies of <span><math><mi>r</mi></math></span>-valently holomorphic functions within the open unit disk <span><math><mi>D</mi></math></span> by employing the fractional <span><math><mi>q</mi></math></span>-derivative operator, along with the principle of subordination between holomorphic functions.<ul><li><span>•</span><span><div>The families we define in this paper constitute a generalization of numerous established classes available in existing literature.</div></span></li><li><span>•</span><span><div>We derive the Fekete-Szegö inequalities for these newly introduced families.</div></span></li><li><span>•</span><span><div>As a result, we apply these findings to establish bounds for the Toeplitz and Hankel determinants <span><math><mrow><msub><mi>T</mi><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mi>γ</mi><mi>u</mi></msub><mo>)</mo></mrow><mo>,</mo><msub><mi>T</mi><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><msub><mi>γ</mi><mi>u</mi></msub><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mi>H</mi><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mi>γ</mi><mrow><mi>u</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, defined as follows:<span><span><span><math><mrow><msub><mi>T</mi><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mi>γ</mi><mi>u</mi></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mtable><mtr><mtd><msub><mi>γ</mi><mn>1</mn></msub></mtd><mtd><msub><mi>γ</mi><mn>2</mn></msub></mtd></mtr><mtr><mtd><msub><mi>γ</mi><mn>2</mn></msub></mtd><mtd><msub><mi>γ</mi><mn>1</mn></msub></mtd></mtr></mtable><mo>|</mo></mrow><mo>,</mo><mspace></mspace><msub><mi>T</mi><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><msub><mi>γ</mi><mi>u</mi></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mtable><mtr><mtd><msub><mi>γ</mi><mn>2</mn></msub></mtd><mtd><msub><mi>γ</mi><mn>3</mn></msub></mtd></mtr><mtr><mtd><msub><mi>γ</mi><mn>3</mn></msub></mtd><mtd><msub><mi>γ</mi><mn>2</mn></msub></mtd></mtr></mtable><mo>|</mo></mrow><mspace></mspace><mspace></mspace><mtext>and</mtext><mspace></mspace><mspace></mspace><msub><mi>H</mi><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mi>γ</mi><mi>u</mi></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mtable><mtr><mtd><msub><mi>γ</mi><mn>1</mn></msub></mtd><mtd><msub><mi>γ</mi><mn>2</mn></msub></mtd></mtr><mtr><mtd><msub><mi>γ</mi><mn>2</mn></msub></mtd><mtd><msub><mi>γ</mi><mn>3</mn></msub></mtd></mtr></mtable><mo>|</mo></mrow></mrow></math></span></span></span>where <span><math><mrow><msub><mi>γ</mi><mn>1</mn></msub><mo>,</mo><msub><mi>γ</mi><mn>2</mn></msub></mrow></math></span>, and <span><math><msub><mi>γ</mi><mn>3</mn></msub></math></span> denote the first, second, and third logarithmic coefficients of functions within the family of multivalent <span><math><mi>q</mi></math></span>-starlike and multivalent <span><math><mi>q</mi></math></span>-convex functions.</div></span></li></ul></div></div>\",\"PeriodicalId\":18446,\"journal\":{\"name\":\"MethodsX\",\"volume\":\"15 \",\"pages\":\"Article 103463\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MethodsX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215016125003085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125003085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Toeplitz and Hankel determinants of logarithmic coefficients for r-valent q-starlike and r-valent q-convex functions
The aim of the present paper is to extend the notions of -starlikeness and -convexity to encompass multivalent -starlikeness and multivalent -convexity. We systematically introduce and examine subfamilies of -valently holomorphic functions within the open unit disk by employing the fractional -derivative operator, along with the principle of subordination between holomorphic functions.
•
The families we define in this paper constitute a generalization of numerous established classes available in existing literature.
•
We derive the Fekete-Szegö inequalities for these newly introduced families.
•
As a result, we apply these findings to establish bounds for the Toeplitz and Hankel determinants and , defined as follows:where , and denote the first, second, and third logarithmic coefficients of functions within the family of multivalent -starlike and multivalent -convex functions.