Ruidong Guo , Xianwei Hu , Liang Tian , Hongguang Kang , Ao Xu , Zhongning Shi , Zhaowen Wang
{"title":"熔融AlCl3-MCl (M = Li, Na, K)体系中物质的热力学和量子化学计算","authors":"Ruidong Guo , Xianwei Hu , Liang Tian , Hongguang Kang , Ao Xu , Zhongning Shi , Zhaowen Wang","doi":"10.1016/j.comptc.2025.115368","DOIUrl":null,"url":null,"abstract":"<div><div>The Hall–Héroult process dominates aluminum production but suffers from high energy demands and pollution. This study investigates the aluminum chloride process as an alternative method by analyzing species behavior in AlCl<sub>3</sub>–MCl (M = Li, Na, K) molten salts at 373–473 K and 933–1033 K through quantum calculations and mathematical modeling. When initial AlCl<sub>3</sub> < 50 mol%, Cl<sup>−</sup> and AlCl<sub>4</sub><sup>−</sup> dominate at 933–1033 K, with minor temperature effects. When initial AlCl<sub>3</sub> > 50 mol%, AlCl<sub>4</sub><sup>−</sup>, Al<sub>2</sub>Cl<sub>7</sub><sup>−</sup> and Al<sub>2</sub>Cl<sub>6</sub> dominate at 373–473 K. Increasing AlCl<sub>3</sub> concentration decreases AlCl<sub>4</sub><sup>−</sup> fraction; Al<sub>2</sub>Cl<sub>7</sub><sup>−</sup> fraction peaks at 66.7 mol% AlCl<sub>3</sub> then declines; Al<sub>2</sub>Cl<sub>6</sub> fraction steadily increases. Higher temperatures promote Al<sub>2</sub>Cl<sub>7</sub><sup>−</sup> conversion to AlCl<sub>4</sub><sup>−</sup> and Al<sub>2</sub>Cl<sub>6</sub>. Redox calculations show preferential Cl<sup>−</sup> discharge at the anode when AlCl<sub>3</sub> < 50 mol%. At AlCl<sub>3</sub> > 50 mol%, Al<sup>3+</sup> in Al<sub>2</sub>Cl<sub>6</sub> discharges at the cathode and Cl<sup>−</sup> in Al<sub>2</sub>Cl<sub>7</sub><sup>−</sup> discharges at the anode.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1252 ","pages":"Article 115368"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic and quantum chemistry calculations of species in the molten AlCl3–MCl (M = Li, Na, K) system\",\"authors\":\"Ruidong Guo , Xianwei Hu , Liang Tian , Hongguang Kang , Ao Xu , Zhongning Shi , Zhaowen Wang\",\"doi\":\"10.1016/j.comptc.2025.115368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Hall–Héroult process dominates aluminum production but suffers from high energy demands and pollution. This study investigates the aluminum chloride process as an alternative method by analyzing species behavior in AlCl<sub>3</sub>–MCl (M = Li, Na, K) molten salts at 373–473 K and 933–1033 K through quantum calculations and mathematical modeling. When initial AlCl<sub>3</sub> < 50 mol%, Cl<sup>−</sup> and AlCl<sub>4</sub><sup>−</sup> dominate at 933–1033 K, with minor temperature effects. When initial AlCl<sub>3</sub> > 50 mol%, AlCl<sub>4</sub><sup>−</sup>, Al<sub>2</sub>Cl<sub>7</sub><sup>−</sup> and Al<sub>2</sub>Cl<sub>6</sub> dominate at 373–473 K. Increasing AlCl<sub>3</sub> concentration decreases AlCl<sub>4</sub><sup>−</sup> fraction; Al<sub>2</sub>Cl<sub>7</sub><sup>−</sup> fraction peaks at 66.7 mol% AlCl<sub>3</sub> then declines; Al<sub>2</sub>Cl<sub>6</sub> fraction steadily increases. Higher temperatures promote Al<sub>2</sub>Cl<sub>7</sub><sup>−</sup> conversion to AlCl<sub>4</sub><sup>−</sup> and Al<sub>2</sub>Cl<sub>6</sub>. Redox calculations show preferential Cl<sup>−</sup> discharge at the anode when AlCl<sub>3</sub> < 50 mol%. At AlCl<sub>3</sub> > 50 mol%, Al<sup>3+</sup> in Al<sub>2</sub>Cl<sub>6</sub> discharges at the cathode and Cl<sup>−</sup> in Al<sub>2</sub>Cl<sub>7</sub><sup>−</sup> discharges at the anode.</div></div>\",\"PeriodicalId\":284,\"journal\":{\"name\":\"Computational and Theoretical Chemistry\",\"volume\":\"1252 \",\"pages\":\"Article 115368\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Theoretical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210271X25003044\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X25003044","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Thermodynamic and quantum chemistry calculations of species in the molten AlCl3–MCl (M = Li, Na, K) system
The Hall–Héroult process dominates aluminum production but suffers from high energy demands and pollution. This study investigates the aluminum chloride process as an alternative method by analyzing species behavior in AlCl3–MCl (M = Li, Na, K) molten salts at 373–473 K and 933–1033 K through quantum calculations and mathematical modeling. When initial AlCl3 < 50 mol%, Cl− and AlCl4− dominate at 933–1033 K, with minor temperature effects. When initial AlCl3 > 50 mol%, AlCl4−, Al2Cl7− and Al2Cl6 dominate at 373–473 K. Increasing AlCl3 concentration decreases AlCl4− fraction; Al2Cl7− fraction peaks at 66.7 mol% AlCl3 then declines; Al2Cl6 fraction steadily increases. Higher temperatures promote Al2Cl7− conversion to AlCl4− and Al2Cl6. Redox calculations show preferential Cl− discharge at the anode when AlCl3 < 50 mol%. At AlCl3 > 50 mol%, Al3+ in Al2Cl6 discharges at the cathode and Cl− in Al2Cl7− discharges at the anode.
期刊介绍:
Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.