Ruichen Geng, Lin Su, Xiaojun Chu, Zhihan Zhang, Ranran Wei, Yinglong Wang, Shuli Yin
{"title":"基于d轨道重叠的富缺陷高熵合金AuCuAgRuNi纳米纤维生物质增值转化","authors":"Ruichen Geng, Lin Su, Xiaojun Chu, Zhihan Zhang, Ranran Wei, Yinglong Wang, Shuli Yin","doi":"10.1039/d5qi00895f","DOIUrl":null,"url":null,"abstract":"Developing electrocatalysts with high activity and selectivity to promote the oxidation of 5-hydroxymethylfurfural (HMF) holds substantial importance yet presents challenges in the realm of biomass upgrading. Herein, the defect-rich high-entropy alloy AuCuAgRuNi nanofibers (AuCuAgRuNi NFs) were synthesized <em>via</em> a facile one-pot wet chemical synthesis. Remarkably, the AuCuAgRuNi NFs demonstrate exceptional electrocatalytic performance for HMF-to-FDCA conversion under ambient conditions, achieving 97.15% yield and 98.40% selectivity with outstanding stability. Theoretical calculations reveal that defect-induced electronic modulation optimizes reactant adsorption, while d-orbital hybridization among multi-metallic components facilitates electron redistribution, synergistically enhancing catalytic activity. Furthermore, HMF oxidation has been successfully integrated with hydrogen evolution in a flow electrolysis cell, and an energy-efficient coupled system has been established, which holds promise for scalable biomass valorization. This research provides valuable insights into the innovative synthesis and inherent catalytic mechanisms of high-entropy alloy systems.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"9 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defect-rich high-entropy alloy AuCuAgRuNi nanofibers based on d-orbital overlap for biomass value-added conversion\",\"authors\":\"Ruichen Geng, Lin Su, Xiaojun Chu, Zhihan Zhang, Ranran Wei, Yinglong Wang, Shuli Yin\",\"doi\":\"10.1039/d5qi00895f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing electrocatalysts with high activity and selectivity to promote the oxidation of 5-hydroxymethylfurfural (HMF) holds substantial importance yet presents challenges in the realm of biomass upgrading. Herein, the defect-rich high-entropy alloy AuCuAgRuNi nanofibers (AuCuAgRuNi NFs) were synthesized <em>via</em> a facile one-pot wet chemical synthesis. Remarkably, the AuCuAgRuNi NFs demonstrate exceptional electrocatalytic performance for HMF-to-FDCA conversion under ambient conditions, achieving 97.15% yield and 98.40% selectivity with outstanding stability. Theoretical calculations reveal that defect-induced electronic modulation optimizes reactant adsorption, while d-orbital hybridization among multi-metallic components facilitates electron redistribution, synergistically enhancing catalytic activity. Furthermore, HMF oxidation has been successfully integrated with hydrogen evolution in a flow electrolysis cell, and an energy-efficient coupled system has been established, which holds promise for scalable biomass valorization. This research provides valuable insights into the innovative synthesis and inherent catalytic mechanisms of high-entropy alloy systems.\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5qi00895f\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5qi00895f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Defect-rich high-entropy alloy AuCuAgRuNi nanofibers based on d-orbital overlap for biomass value-added conversion
Developing electrocatalysts with high activity and selectivity to promote the oxidation of 5-hydroxymethylfurfural (HMF) holds substantial importance yet presents challenges in the realm of biomass upgrading. Herein, the defect-rich high-entropy alloy AuCuAgRuNi nanofibers (AuCuAgRuNi NFs) were synthesized via a facile one-pot wet chemical synthesis. Remarkably, the AuCuAgRuNi NFs demonstrate exceptional electrocatalytic performance for HMF-to-FDCA conversion under ambient conditions, achieving 97.15% yield and 98.40% selectivity with outstanding stability. Theoretical calculations reveal that defect-induced electronic modulation optimizes reactant adsorption, while d-orbital hybridization among multi-metallic components facilitates electron redistribution, synergistically enhancing catalytic activity. Furthermore, HMF oxidation has been successfully integrated with hydrogen evolution in a flow electrolysis cell, and an energy-efficient coupled system has been established, which holds promise for scalable biomass valorization. This research provides valuable insights into the innovative synthesis and inherent catalytic mechanisms of high-entropy alloy systems.