CLASS-M:基于自适应染色分离的伪标记对比学习,用于组织病理图像分类

IF 11.8 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Bodong Zhang , Hamid Manoochehri , Man Minh Ho , Fahimeh Fooladgar , Yosep Chong , Beatrice S. Knudsen , Deepika Sirohi , Tolga Tasdizen
{"title":"CLASS-M:基于自适应染色分离的伪标记对比学习,用于组织病理图像分类","authors":"Bodong Zhang ,&nbsp;Hamid Manoochehri ,&nbsp;Man Minh Ho ,&nbsp;Fahimeh Fooladgar ,&nbsp;Yosep Chong ,&nbsp;Beatrice S. Knudsen ,&nbsp;Deepika Sirohi ,&nbsp;Tolga Tasdizen","doi":"10.1016/j.media.2025.103711","DOIUrl":null,"url":null,"abstract":"<div><div>Histopathological image classification is an important task in medical image analysis. Recent approaches generally rely on weakly supervised learning due to the ease of acquiring case-level labels from pathology reports. However, patch-level classification is preferable in applications where only a limited number of cases are available or when local prediction accuracy is critical. On the other hand, acquiring extensive datasets with localized labels for training is not feasible. In this paper, we propose a semi-supervised patch-level histopathological image classification model, named CLASS-M, that does not require extensively labeled datasets. CLASS-M is formed by two main parts: a contrastive learning module that uses separated Hematoxylin images and Eosin images generated through an adaptive stain separation process, and a module with pseudo-labels using MixUp. We compare our model with other state-of-the-art models on two clear cell renal cell carcinoma datasets. We demonstrate that our CLASS-M model has the best performance on both datasets. Our code is available at <span><span>github.com/BzhangURU/Paper_CLASS-M/tree/main</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"105 ","pages":"Article 103711"},"PeriodicalIF":11.8000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CLASS-M: Adaptive stain separation-based contrastive learning with pseudo-labeling for histopathological image classification\",\"authors\":\"Bodong Zhang ,&nbsp;Hamid Manoochehri ,&nbsp;Man Minh Ho ,&nbsp;Fahimeh Fooladgar ,&nbsp;Yosep Chong ,&nbsp;Beatrice S. Knudsen ,&nbsp;Deepika Sirohi ,&nbsp;Tolga Tasdizen\",\"doi\":\"10.1016/j.media.2025.103711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Histopathological image classification is an important task in medical image analysis. Recent approaches generally rely on weakly supervised learning due to the ease of acquiring case-level labels from pathology reports. However, patch-level classification is preferable in applications where only a limited number of cases are available or when local prediction accuracy is critical. On the other hand, acquiring extensive datasets with localized labels for training is not feasible. In this paper, we propose a semi-supervised patch-level histopathological image classification model, named CLASS-M, that does not require extensively labeled datasets. CLASS-M is formed by two main parts: a contrastive learning module that uses separated Hematoxylin images and Eosin images generated through an adaptive stain separation process, and a module with pseudo-labels using MixUp. We compare our model with other state-of-the-art models on two clear cell renal cell carcinoma datasets. We demonstrate that our CLASS-M model has the best performance on both datasets. Our code is available at <span><span>github.com/BzhangURU/Paper_CLASS-M/tree/main</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"105 \",\"pages\":\"Article 103711\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361841525002580\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525002580","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

组织病理图像分类是医学图像分析中的一项重要工作。最近的方法通常依赖于弱监督学习,因为很容易从病理报告中获得病例级标签。然而,在只有有限数量的可用病例或局部预测精度至关重要的应用程序中,补丁级分类更可取。另一方面,获取具有局部标签的广泛数据集进行训练是不可行的。在本文中,我们提出了一种半监督的斑块级组织病理学图像分类模型,命名为CLASS-M,它不需要广泛标记的数据集。CLASS-M由两个主要部分组成:一个是对比学习模块,使用通过自适应染色分离过程生成的分离的苏木精图像和伊红图像,另一个是使用MixUp的伪标签模块。在两个透明细胞肾细胞癌数据集上,我们将我们的模型与其他最先进的模型进行比较。我们证明了我们的CLASS-M模型在两个数据集上都有最好的性能。我们的代码可在github.com/BzhangURU/Paper_CLASS-M/tree/main上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CLASS-M: Adaptive stain separation-based contrastive learning with pseudo-labeling for histopathological image classification
Histopathological image classification is an important task in medical image analysis. Recent approaches generally rely on weakly supervised learning due to the ease of acquiring case-level labels from pathology reports. However, patch-level classification is preferable in applications where only a limited number of cases are available or when local prediction accuracy is critical. On the other hand, acquiring extensive datasets with localized labels for training is not feasible. In this paper, we propose a semi-supervised patch-level histopathological image classification model, named CLASS-M, that does not require extensively labeled datasets. CLASS-M is formed by two main parts: a contrastive learning module that uses separated Hematoxylin images and Eosin images generated through an adaptive stain separation process, and a module with pseudo-labels using MixUp. We compare our model with other state-of-the-art models on two clear cell renal cell carcinoma datasets. We demonstrate that our CLASS-M model has the best performance on both datasets. Our code is available at github.com/BzhangURU/Paper_CLASS-M/tree/main.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信