Weiwei Gu, Chen Yang, Lei Li, Jinqiang Hou, Filippo Radicchi
{"title":"深度学习辅助拆解相互依赖的网络","authors":"Weiwei Gu, Chen Yang, Lei Li, Jinqiang Hou, Filippo Radicchi","doi":"10.1038/s42256-025-01070-2","DOIUrl":null,"url":null,"abstract":"<p>Identifying the minimal set of nodes whose removal breaks a complex network apart, also referred as the network dismantling problem, is a highly non-trivial task with applications in multiple domains. Whereas network dismantling has been extensively studied over the past decade, research has primarily focused on the optimization problem for single-layer networks, neglecting that many, if not all, real networks display multiple layers of interdependent interactions. In such networks, the optimization problem is fundamentally different as the effect of removing nodes propagates within and across layers in a way that can not be predicted using a single-layer perspective. Here we propose a dismantling algorithm named MultiDismantler, which leverages multiplex network representation and deep reinforcement learning to optimally dismantle multilayer interdependent networks. MultiDismantler is trained on small synthetic graphs; when applied to large, either real or synthetic, networks, it displays exceptional dismantling performance, clearly outperforming all existing benchmark algorithms. We show that MultiDismantler is effective in guiding strategies for the containment of diseases in social networks characterized by multiple layers of social interactions. Also, we show that MultiDismantler is useful in the design of protocols aimed at delaying the onset of cascading failures in interdependent critical infrastructures.</p>","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"9 1","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep-learning-aided dismantling of interdependent networks\",\"authors\":\"Weiwei Gu, Chen Yang, Lei Li, Jinqiang Hou, Filippo Radicchi\",\"doi\":\"10.1038/s42256-025-01070-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Identifying the minimal set of nodes whose removal breaks a complex network apart, also referred as the network dismantling problem, is a highly non-trivial task with applications in multiple domains. Whereas network dismantling has been extensively studied over the past decade, research has primarily focused on the optimization problem for single-layer networks, neglecting that many, if not all, real networks display multiple layers of interdependent interactions. In such networks, the optimization problem is fundamentally different as the effect of removing nodes propagates within and across layers in a way that can not be predicted using a single-layer perspective. Here we propose a dismantling algorithm named MultiDismantler, which leverages multiplex network representation and deep reinforcement learning to optimally dismantle multilayer interdependent networks. MultiDismantler is trained on small synthetic graphs; when applied to large, either real or synthetic, networks, it displays exceptional dismantling performance, clearly outperforming all existing benchmark algorithms. We show that MultiDismantler is effective in guiding strategies for the containment of diseases in social networks characterized by multiple layers of social interactions. Also, we show that MultiDismantler is useful in the design of protocols aimed at delaying the onset of cascading failures in interdependent critical infrastructures.</p>\",\"PeriodicalId\":48533,\"journal\":{\"name\":\"Nature Machine Intelligence\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":18.8000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1038/s42256-025-01070-2\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1038/s42256-025-01070-2","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Deep-learning-aided dismantling of interdependent networks
Identifying the minimal set of nodes whose removal breaks a complex network apart, also referred as the network dismantling problem, is a highly non-trivial task with applications in multiple domains. Whereas network dismantling has been extensively studied over the past decade, research has primarily focused on the optimization problem for single-layer networks, neglecting that many, if not all, real networks display multiple layers of interdependent interactions. In such networks, the optimization problem is fundamentally different as the effect of removing nodes propagates within and across layers in a way that can not be predicted using a single-layer perspective. Here we propose a dismantling algorithm named MultiDismantler, which leverages multiplex network representation and deep reinforcement learning to optimally dismantle multilayer interdependent networks. MultiDismantler is trained on small synthetic graphs; when applied to large, either real or synthetic, networks, it displays exceptional dismantling performance, clearly outperforming all existing benchmark algorithms. We show that MultiDismantler is effective in guiding strategies for the containment of diseases in social networks characterized by multiple layers of social interactions. Also, we show that MultiDismantler is useful in the design of protocols aimed at delaying the onset of cascading failures in interdependent critical infrastructures.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.